32 resultados para ELECTROCHEMICAL POLARIZATION PHENOMENA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell based biosensor can be produced by coupling the intracellular recognition of arsenite to the generation of an electrochemical signal. Hereto, E. coli was equipped with a genetic circuit in which synthesis of beta-galactosidase is under control of the arsenite-derepressable arsR-promoter. The E. coli reporter strain was filled in a microchip containing 16 independent electrochemical cells (i.e. two-electrode cell), which was then employed for analysis of tap and groundwater samples. The developed arsenic-sensitive electrochemical biochip is easy to use and outperforms state-of-the-art bacterial bioreporters assays specifically in its simplicity and response time, while keeping a very good limit of detection in tap water, i.e. 0.8ppb. Additionally, a very good linear response in the ranges of concentration tested (0.94ppb to 3.75ppb, R(2)=0.9975 and 3.75 ppb to 30ppb, R(2)=0.9991) was obtained, complying perfectly with the acceptable arsenic concentration limits defined by the World Health Organization for drinking water samples (i.e. 10ppb). Therefore, the proposed assay provides a very good alternative for the portable quantification of As (III) in water as corroborated by the analysis of natural groundwater samples from Swiss mountains, which showed a very good agreement with the results obtained by atomic absorption spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a wide range of evidence to suggest that permeability can be constrained through of induced polarization measurements. For clean sands and sandstones, current mechanistic models of induced polarization predict a relationship between the low-frequency time constant inferred from induced polarization measurements and the grain diameter. A number of observations do, however, disagree with this and indicate that the observed relaxation behavior is rather governed by the so-called dynamic pore radius L. To test this hypothesis, we have developed a set of new scaling relationships, which allow the relaxation time to be computed from the pore size and the permeability to be computed from both the Cole-Cole time constant and the formation factor. Moreover, these new scaling relationships can be also used to predict the dependence of the Cole-Cole time constant as a function of the water saturation under unsaturated conditions. Comparative tests of the proposed new relationships with regard to various published experimental results for saturated clean sands and sandstones as well as for partially saturated clean sandstones, do indeed confirm that the dynamic pore radius L is a much more reliable indicator of the observed relaxation behavior than grain-size-based models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel, which can be regarded as proxies for widespread alluvial deposits. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. The results of this study underline the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raise some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial sedimentary deposits. Here, we present the results of laboratory SIP measurements on saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We alter the pore characteristics using three principal methods: (i) variation of the grain sizes, (ii) changing the degree of compaction, and (iii) changing the level of sorting. We then examine how these changes affect both the SIP response and the hydraulic conductivity. In general, the results indicate a clear connection between the applied changes in pore characteristics and the SIP response. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the whole range of considered grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phototropism is an adaptation response, through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism, revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells, resulting in changes in auxin distribution and differential growth. In the dark, high expression and activity of the PINOID (PID) kinase correlates with apolar targeting of PIN3 to all cell sides. Following illumination, light represses PINOID transcription and PIN3 is polarized specifically to the inner cell sides by GNOM ARF GTPase GEF (guanine nucleotide exchange factor)-dependent trafficking. Thus, differential trafficking at the shaded and illuminated hypocotyl side aligns PIN3 polarity with the light direction, and presumably redirects auxin flow towards the shaded side, where auxin promotes growth, causing hypocotyls to bend towards the light. Our results imply that PID phosphorylation-dependent recruitment of PIN proteins into distinct trafficking pathways is a mechanism to polarize auxin fluxes in response to different environmental and endogenous cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La théorie de l'autocatégorisation est une théorie de psychologie sociale qui porte sur la relation entre l'individu et le groupe. Elle explique le comportement de groupe par la conception de soi et des autres en tant que membres de catégories sociales, et par l'attribution aux individus des caractéristiques prototypiques de ces catégories. Il s'agit donc d'une théorie de l'individu qui est censée expliquer des phénomènes collectifs. Les situations dans lesquelles un grand nombre d'individus interagissent de manière non triviale génèrent typiquement des comportements collectifs complexes qui sont difficiles à prévoir sur la base des comportements individuels. La simulation informatique de tels systèmes est un moyen fiable d'explorer de manière systématique la dynamique du comportement collectif en fonction des spécifications individuelles. Dans cette thèse, nous présentons un modèle formel d'une partie de la théorie de l'autocatégorisation appelée principe du métacontraste. À partir de la distribution d'un ensemble d'individus sur une ou plusieurs dimensions comparatives, le modèle génère les catégories et les prototypes associés. Nous montrons que le modèle se comporte de manière cohérente par rapport à la théorie et est capable de répliquer des données expérimentales concernant divers phénomènes de groupe, dont par exemple la polarisation. De plus, il permet de décrire systématiquement les prédictions de la théorie dont il dérive, notamment dans des situations nouvelles. Au niveau collectif, plusieurs dynamiques peuvent être observées, dont la convergence vers le consensus, vers une fragmentation ou vers l'émergence d'attitudes extrêmes. Nous étudions également l'effet du réseau social sur la dynamique et montrons qu'à l'exception de la vitesse de convergence, qui augmente lorsque les distances moyennes du réseau diminuent, les types de convergences dépendent peu du réseau choisi. Nous constatons d'autre part que les individus qui se situent à la frontière des groupes (dans le réseau social ou spatialement) ont une influence déterminante sur l'issue de la dynamique. Le modèle peut par ailleurs être utilisé comme un algorithme de classification automatique. Il identifie des prototypes autour desquels sont construits des groupes. Les prototypes sont positionnés de sorte à accentuer les caractéristiques typiques des groupes, et ne sont pas forcément centraux. Enfin, si l'on considère l'ensemble des pixels d'une image comme des individus dans un espace de couleur tridimensionnel, le modèle fournit un filtre qui permet d'atténuer du bruit, d'aider à la détection d'objets et de simuler des biais de perception comme l'induction chromatique. Abstract Self-categorization theory is a social psychology theory dealing with the relation between the individual and the group. It explains group behaviour through self- and others' conception as members of social categories, and through the attribution of the proto-typical categories' characteristics to the individuals. Hence, it is a theory of the individual that intends to explain collective phenomena. Situations involving a large number of non-trivially interacting individuals typically generate complex collective behaviours, which are difficult to anticipate on the basis of individual behaviour. Computer simulation of such systems is a reliable way of systematically exploring the dynamics of the collective behaviour depending on individual specifications. In this thesis, we present a formal model of a part of self-categorization theory named metacontrast principle. Given the distribution of a set of individuals on one or several comparison dimensions, the model generates categories and their associated prototypes. We show that the model behaves coherently with respect to the theory and is able to replicate experimental data concerning various group phenomena, for example polarization. Moreover, it allows to systematically describe the predictions of the theory from which it is derived, specially in unencountered situations. At the collective level, several dynamics can be observed, among which convergence towards consensus, towards frag-mentation or towards the emergence of extreme attitudes. We also study the effect of the social network on the dynamics and show that, except for the convergence speed which raises as the mean distances on the network decrease, the observed convergence types do not depend much on the chosen network. We further note that individuals located at the border of the groups (whether in the social network or spatially) have a decisive influence on the dynamics' issue. In addition, the model can be used as an automatic classification algorithm. It identifies prototypes around which groups are built. Prototypes are positioned such as to accentuate groups' typical characteristics and are not necessarily central. Finally, if we consider the set of pixels of an image as individuals in a three-dimensional color space, the model provides a filter that allows to lessen noise, to help detecting objects and to simulate perception biases such as chromatic induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.