295 resultados para EEG-fMRI
Resumo:
We analyzed the coherence of electroencephalographic (EEG) signals recorded symmetrically from the two hemispheres, while subjects (n = 9) were viewing visual stimuli. Considering the many common features of the callosal connectivity in mammals, we expected that, as in our animal studies, interhemispheric coherence (ICoh) would increase only with bilateral iso-oriented gratings located close to the vertical meridian of the visual field, or extending across it. Indeed, a single grating that extended across the vertical meridian significantly increased the EEG ICoh in normal adult subjects. These ICoh responses were obtained from occipital and parietal derivations and were restricted to the gamma frequency band. They were detectable with different EEG references and were robust across and within subjects. Other unilateral and bilateral stimuli, including identical gratings that were effective in anesthetized animals, did not affect ICoh in humans. This fact suggests the existence of regulatory influences, possibly of a top-down kind, on the pattern of callosal activation in conscious human subjects. In addition to establishing the validity of EEG coherence analysis for assaying cortico-cortical connectivity, this study extends to the human brain the finding that visual stimuli cause interhemispheric synchronization, particularly in frequencies of the gamma band. It also indicates that the synchronization is carried out by cortico-cortical connection and suggests similarities in the organization of visual callosal connections in animals and in man.
Resumo:
Recently a new measure of the cooperative behavior of simultaneous time series was introduced (Carmeli et al. NeuroImage 2005). This measure called S-estimator is defined from the embedding dimension in a state space. S-estimator quantifies the amount of synchronization within a data set by comparing the actual dimensionality of the set with the expected full dimensionality of the asynchronous set. It has the advantage of being a multivariate measure over traditionally used in systems neuroscience bivariate measures of synchronization. Multivariate measures of synchronization are of particular interest for applications in the field of modern multichannel EEG research, since they easily allow mapping of local and/or regional synchronization and are compatible with other imaging techniques. We applied Sestimator to the analysis of EEG synchronization in schizophrenia patients vs. matched controls. The whole-head mapping with S-estimator revealed a specific pattern of local synchronization in schizophrenia patients. The differences in the landscape of synchronization included decreased local synchronization in the territories over occipital and midline areas and increased synchronization over temporal areas. In frontal areas, the S-estimator revealed a tendency for an asymmetry: decreased S-values over the left hemisphere were adjacent to increased values over the right hemisphere. Separate calculations showed reproducibility of this pattern across the main EEG frequency bands. The maintenance of the same synchronization landscape across EEG frequencies probably implies the structural changes in the cortical circuitry of schizophrenia patients. These changes are regionally specific and suggest that schizophrenia is a misconnectivity rather than hypo- or hyper-connectivity disorder.
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Resumo:
The age-related increase in interference susceptibility has been well documented and largely attributed to a deficit in inhibition. In the present study, event-related potentials were used to investigate EEG correlates of inhibitory processing in an interference "Arrow" task. A specific interest was addressed to theN2 and P3 components that respectively refers to conflict monitoring and to efficiency of inhibition processes (Anguera et al,. 2011). Younger (N=10, Mage=24.6) and older (N=10, Mage=65.5) participants were invited to perform a task consisting in deciding, as fast and accurately as possible, whether an arrow presented on a computer screen points to the left or the right, irrespective of its position on the screen (left, middle or right). Responses were provided by key-presses using the left and right indexes. Three conditions were considered: congruent (arrow pointing to the same direction as that of the side of the screen on which it appears), incongruent (arrow pointing to the opposite direction), and neutral (arrow presented at the center of the screen). A total of 56 trials per conditions were performed. Behaviorally, the results showed that in the incongruent condition the percent of correct responses significantly decreased in both groups. After adjustment with simple RT (additional control task), the increased RTs obtained in the old group were significantly more pronounced in the incongruent condition. With respect to electrophysiological data, results showed that frontal site (Fz), the N2 amplitude was significantly larger for the younger as compared to the older (- 2.55 μV vs. -0.62 μV respectively) whatever the condition. At central site (Cz), the P3 amplitude significantly decreased in the older compared to the younger in the incongruent condition only. Our findings suggest that the increased RTs observed in older participants during the incongruent condition is more specifically linked to late cognitive resources involved in inhibiting prepotent response tendencies rather than associated with earlier stages of treatment dedicated to conflict monitoring.
Resumo:
The representation of the human body in the human cerebellum is still relatively unknown, compared to the well-studied homunculus in the primary somatosensory cortex. The investigation of the body representation in the cerebellum and its somatotopic organisation is complicated because of the relatively small dimensions of the cerebellum, compared to the cerebrum. Somatotopically organised whole-body homunculi have previously been reported in both humans and rats. However, whether individual digits are represented in the cerebellum in a somatotopically organised way is much less clear. In this study, the high spatial resolution and high sensitivity to the blood oxygenation level dependent (BOLD) signal of 7T fMRI were employed to study the BOLD responses in the human cerebellum to the stroking of the skin of individual digits, the hand and forearm. For the first time, a coarse somatotopic organisation of the digits, ordered from D1-D5, could be visualised in individual human subjects in both the anterior (lobule V) and the posterior (lobule VIII) lobes of the cerebellum using a somatosensory stimulus. The somatotopic gradient in lobule V was found consistently in the posterior to anterior direction, with the thumb most posterior, while the direction of the somatotopic gradient in lobule VIII differed between subjects. No somatotopic organisation was found in Crus I. A comparison of the digit patches with the hand patch revealed that the digit regions are completely covered by the hand region in both the anterior and posterior lobes of the cerebellum, in a non-somatotopic manner. These results demonstrate the promise of ultra-high field, high-resolution fMRI for studies of the cerebellum.
Resumo:
The pharmacokinetics and pharmacodynamics (waking EEG) of 75 mg trimipramine taken orally were determined in two healthy volunteers on two separate occasions, once without and once after comedication with 2 x 50 mg quinidine. Quinidine, a potent cytochrome P-450IID6 inhibitor, is used as a pharmacological tool to mimic a lack of this enzyme in man. In this study, it markedly altered the pharmacokinetics of trimipramine, almost doubling its plasma half-life and decreasing its apparent clearance and volume of distribution. These results strongly suggest that trimipramine is a substrate of cytochrome P-450IID6. These modifications of trimipramine metabolism were accompanied by measurable changes in some EEG variables, most notably with regard to the relative power in the alpha and theta bands, which showed higher and longer-lasting effects of trimipramine. Since cytochrome P-450IID6 is deficient in 5-10% of Caucasian subjects, this may have consequences in trimipramine-treated subjects, especially with regard to the effects of the drug on the EEG.
Resumo:
Synchronization behavior of electroencephalographic (EEG) signals is important for decoding information processing in the human brain. Modern multichannel EEG allows a transition from traditional measurements of synchronization in pairs of EEG signals to whole-brain synchronization maps. The latter can be based on bivariate measures (BM) via averaging over pair-wise values or, alternatively, on multivariate measures (MM), which directly ascribe a single value to the synchronization in a group. In order to compare BM versus MM, we applied nine different estimators to simulated multivariate time series with known parameters and to real EEGs.We found widespread correlations between BM and MM, which were almost frequency-independent for all the measures except coherence. The analysis of the behavior of synchronization measures in simulated settings with variable coupling strength, connection probability, and parameter mismatch showed that some of them, including S-estimator, S-Renyi, omega, and coherence, aremore sensitive to linear interdependences,while others, like mutual information and phase locking value, are more responsive to nonlinear effects. Onemust consider these properties together with the fact thatMM are computationally less expensive and, therefore, more efficient for the large-scale data sets than BM while choosing a synchronization measure for EEG analysis.
Resumo:
Peri-insular hemispherotomy is a surgical technique used in the treatment of drug-resistant epilepsy of hemispheric origin. It is based on the exposure of insula and semi-circular sulci, providing access to the lateral ventricle through a supra- and infra-insular window. From inside the ventricle, a parasagittal callosotomy is performed. The basal and medial portion of the frontal lobe is isolated. Projections to the anterior commissure are interrupted at the time of amygdala resection. The hippocampal tail and fimbria-fornix are disrupted posteriorly. We report our experience of 18 cases treated with this approach. More than half of them presented with congenital epilepsy. Neuronavigation was useful in precisely determining the center and extent of the craniotomy, as well as the direction of tractotomies and callosotomy, allowing minimal exposure and blood loss. Intra-operative monitoring by scalp EEG on the contralateral hemisphere was used to follow the progression of the number of interictal spikes during the disconnection procedure. Approximately 90% of patients were in Engel's Class I. We observed one case who presented with transient postoperative neurological deterioration probably due to CSF overdrainage and documented one case of incomplete disconnection in a patient presenting with hemimegalencephaly who needed a second operation. We observed a good correlation between a significant decrease in the number of spikes at the end of the procedure and seizure outcome. Peri-insular hemispherotomy provides a functional disconnection of the hemisphere with minimal resection of cerebral tissue. It is an efficient technique with a low complication rate. Intra-operative EEG monitoring might be used as a predictive factor of completeness of the disconnection and consequently, seizure outcome.
Resumo:
Introduction : The pathological processes caused by Alzheimer's disease (AD) supposedly disrupt communication between and within the distributed cortical networks due to the dysfunction/loss of synapses and myelination breakdown. Indeed, recently (Knyazeva et al. 2008), we have revealed the whole-head topography of EEG synchronization specific to AD. Here we analyze whether and how these abnormalities of synchronization are related to the demyelination of cortico-cortical fibers. Methods : Fifteen newly diagnosed AD patients (CDR 0.5-1) and 15 controls matched for age, participated in the study. Their multichannel (128) EEGs were recorded during 3-5 min at rest. They were submitted to the multivariate phase synchronization (MPS) analysis for mapping regional synchronization. To obtain individual whole-head maps, the MPS was computed for each sensor considering its 2nd nearest topographical neighbors. Separate calculations were performed for the delta, theta, alpha-1/−2, and beta-1/−2 EEG bands. The same subjects were scanned on a 3 Tesla Philips scanner. The protocol included a high-resolution T1-weighted sequence and a Magnetization Transfer Imaging (MTI) acquisition. For each subject, we defined a 3mm thick layer of white matter exactly below the cortical gray matter. The magnetization transfer ratio (MTR) - an estimator of myelination - was calculated for this layer in 39 Brodmann-defined ROIs per hemisphere. To assess the between-group differences, we used a permutation version of Hotelling's T2 test or two-sample T-test (Pcorrected <0.05). For correlation analysis, Spearman Rank Correlation was calculated. Results : In AD patients, we have found an abnormal landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region of the left hemisphere and an increase over the temporo-parieto-occipital regions bilaterally. Also, we have shown a widespread decrease in regional MTR in the AD patients for all the areas excluding motor, premotor, and primary sensory ones. Assuming that AD-related changes in synchronization are associated with demyelination, we hypothesized a correlation between the regional MTR values and MPS values in the hypo- and hyper-synchronized clusters. We found that MPS in the left fronto-temporal hypo-synchronized cluster directly correlates with myelination in BA42-46 of the left hemisphere: the lower the myelination in individual patients, the lower the EEG synchronization. By contrast, in the posterior hyper-synchronized cluster, MPS inversely correlated with myelination, i.e., the lower the myelination, the higher the synchronization. This posterior hyper-synchronization, more characteristic for early-onset AD, probably, results from the initial effect of the disease on cortical inhibition, reducing cortical capacity for decoupling irrelevant connections. Remarkably, it showed different topography of correlations in early- vs. late-onset patients. In the early-onset patients, hyper-synchronization was mainly related to demyelination in posterior BAs, the effect being significant in all the EEG frequency bands. In the late-onset patients, widely distributed correlations were significant for the EEG delta band, suggesting an interaction between the cerebral manifestations of AD and the age of its onset, i.e., topographically selective impairment of cortical inhibition in early-onset AD vs. its wide-spread weakening in old age. Conclusions : Overall, our results document that the degradation of white matter is a significant factor of AD pathogenesis leading to functional dysconnection, the latter being reflected in EEG synchronization abnormalities.
Resumo:
Language is typically a function of the left hemisphere but the right hemisphere is also essential in some healthy individuals and patients. This inter-subject variability necessitates the localization of language function, at the individual level, prior to neurosurgical intervention. Such assessments are typically made by comparing left and right hemisphere language function to determine "language lateralization" using clinical tests or fMRI. Here, we show that language function needs to be assessed at the region and hemisphere specific level, because laterality measures can be misleading. Using fMRI data from 82 healthy participants, we investigated the degree to which activation for a semantic word matching task was lateralized in 50 different brain regions and across the entire cortex. This revealed two novel findings. First, the degree to which language is lateralized across brain regions and between subjects was primarily driven by differences in right hemisphere activation rather than differences in left hemisphere activation. Second, we found that healthy subjects who have relatively high left lateralization in the angular gyrus also have relatively low left lateralization in the ventral precentral gyrus. These findings illustrate spatial heterogeneity in language lateralization that is lost when global laterality measures are considered. It is likely that the complex spatial variability we observed in healthy controls is more exaggerated in patients with brain damage. We therefore highlight the importance of investigating within hemisphere regional variations in fMRI activation, prior to neuro-surgical intervention, to determine how each hemisphere and each region contributes to language processing. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.
Resumo:
Depuis la Décennie du cerveau, proclamée en 1990 aux Etats-Unis et en 1993 en Suisse, les neurosciences semblent avoir lié solidement la psychiatrie à la médecine somatique et aux sciences de la vie, notamment à travers la neuroimagerie fonctionnelle (TEP, IRMf, EEG). Ces différentes techniques permettent d'enregistrer l'activité cérébrale humaine in vivo au cours de certaines tâches cognitives et de la corréler à des diagnostics, des symptômes ou des traits psychologiques. Elles promettent le développement d'une recherche enfin interdisciplinaire et translationnelle, qui vise l'application de la recherche fondamentale neuroscientifique à la clinique psychiatrique afin de résoudre la question des causes neurobiologiques des maladies mentales. Ce travail propose une autre histoire des techniques de neuroimagerie en psychiatrie, sur plus d'un siècle, en se basant sur des entretiens, des observations in situ et des sources historiques peu connues appartenant entre autres au passé de la psychiatrie académique suisse. Cette thèse montre de quelle manière la neuroimagerie fonctionnelle contribue à la formation de versions cliniques et expérimentales d'un sujet cérébral à l'intersection de la psychopathologie, de la psychopharmacologie et de la neuropsychologie cognitive.¦-¦Since the Decade of the brain, which was proclaimed in the USA in 1990 and in Switzerland in 1993, psychiatry appeared to get closer to somatic medicine and neurosciences, mainly thanks to functional neuroimaging (PET, fMRI, EEG). These techniques record in vivo human brain activity during cognitive tasks and correlate patterns of activity with psychiatric disorders, symptoms or psychological dimensions. They promise the development of interdisciplinary and translational research in biomedicine, resulting in the application of fundamental research to clinical psychiatry. The aim is to solve the etiology of mental disorders. This dissertation proposes another story of these techniques as used in psychiatry, starting more than a century ago. Relying on interviews, in situ observations and unexploited historical sources belonging mainly to swiss academic psychiatry past, this study shows how functional neuroimaging has contributed to versions of clinical and experimental cerebral subject at the crossroads between psychopathology, psychopharmacology, and cognitive neuropsychology.
Resumo:
Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2g/day, 6 months) significantly improved the negative symptoms and reduced sideeffects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDA-dependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. The topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization, thus linking EEG synchronization to the improvement of the clinical picture. Conclusions: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.