65 resultados para Dynamic mechanical analysis
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Resumo:
Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.
Resumo:
Inconsistencies about dynamic asymmetry between the on- and off-transient responses in VO2 are found in the literature. Therefore the purpose of this study was to examine VO2 on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT), or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of VO2 during cycling exercise in the heavy-intensity domain.
Resumo:
BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.
Resumo:
In the Ballabeina study, we investigated age- and BMI-group-related differences in aerobic fitness (20 m shuttle run), agility (obstacle course), dynamic (balance beam) and static balance (balance platform), and physical activity (PA, accelerometers) in 613 children (M age = 5.1 years, SD = 0.6). Normal weight (NW) children performed better than overweight (OW) children in aerobic fitness, agility, and dynamic balance (all p <.001), while OWchildren had a better static balance (p < .001). BMI-group-related differences in aerobic fitness and agility were larger in older children (p for interaction with age = .01) in favor of the NW children. PA did not differ between NW and OW (p > or = .1), but did differ between NW and obese children (p < .05). BMI-group-related differences in physical fitness can already be present in preschool-age children.
Resumo:
BACKGROUND: Adherence to combination antiretroviral therapy (cART) is a dynamic process, however, changes in adherence behavior over time are insufficiently understood. METHODS: Data on self-reported missed doses of cART was collected every 6 months in Swiss HIV Cohort Study participants. We identified behavioral groups associated with specific cART adherence patterns using trajectory analyses. Repeated measures logistic regression identified predictors of changes in adherence between consecutive visits. RESULTS: Six thousand seven hundred nine individuals completed 49,071 adherence questionnaires [median 8 (interquartile range: 5-10)] during a median follow-up time of 4.5 years (interquartile range: 2.4-5.1). Individuals were clustered into 4 adherence groups: good (51.8%), worsening (17.4%), improving (17.6%), and poor adherence (13.2%). Independent predictors of worsening adherence were younger age, basic education, loss of a roommate, starting intravenous drug use, increasing alcohol intake, depression, longer time with HIV, onset of lipodystrophy, and changing care provider. Independent predictors of improvements in adherence were regimen simplification, changing class of cART, less time on cART, and starting comedications. CONCLUSIONS: Treatment, behavioral changes, and life events influence patterns of drug intake in HIV patients. Clinical care providers should routinely monitor factors related to worsening adherence and intervene early to reduce the risk of treatment failure and drug resistance.
Resumo:
The aim of this study was to propose a methodology allowing a detailed characterization of body sit-to-stand/stand-to-sit postural transition. Parameters characterizing the kinematics of the trunk movement during sit-to-stand (Si-St) postural transition were calculated using one initial sensor system fixed on the trunk and a data logger. Dynamic complexity of these postural transitions was estimated by fractal dimension of acceleration-angular velocity plot. We concluded that this method provides a simple and accurate tool for monitoring frail elderly and to objectively evaluate the efficacy of a rehabilitation program.
Resumo:
The international Functional Annotation Of the Mammalian Genomes 4 (FANTOM4) research collaboration set out to better understand the transcriptional network that regulates macrophage differentiation and to uncover novel components of the transcriptome employing a series of high-throughput experiments. The primary and unique technique is cap analysis of gene expression (CAGE), sequencing mRNA 5'-ends with a second-generation sequencer to quantify promoter activities even in the absence of gene annotation. Additional genome-wide experiments complement the setup including short RNA sequencing, microarray gene expression profiling on large-scale perturbation experiments and ChIP-chip for epigenetic marks and transcription factors. All the experiments are performed in a differentiation time course of the THP-1 human leukemic cell line. Furthermore, we performed a large-scale mammalian two-hybrid (M2H) assay between transcription factors and monitored their expression profile across human and mouse tissues with qRT-PCR to address combinatorial effects of regulation by transcription factors. These interdependent data have been analyzed individually and in combination with each other and are published in related but distinct papers. We provide all data together with systematic annotation in an integrated view as resource for the scientific community (http://fantom.gsc.riken.jp/4/). Additionally, we assembled a rich set of derived analysis results including published predicted and validated regulatory interactions. Here we introduce the resource and its update after the initial release.
Resumo:
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
This article examines, in two Swiss cantons, the interdependence from a medical care point of view of various regions (health planning zones in one canton, political districts in the other). The volume and the destination of patient referrals prescribed by physicians in ambulatory practice are analyzed. The available data (on 1609 referrals) were gathered by the practitioners themselves, during a National Ambulatory Medical Care Survey type study in February-March 1981, in which 203 physicians participated. Several indicators are proposed (including an integration coefficient and an attraction coefficient for each zone); they show marked differences among the regions. This dynamic approach, based on the effective behavior of physicians, appears to be of major interest for health planning purposes (as compared with the frequent practice to use mainly parameters in relation with the availability of care services--the "supply"--numbers of professionals and/or health facilities).
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.
Resumo:
Richer and healthier agents tend to hold riskier portfolios and spend proportionally less on health expenditures. Potential explanations include health and wealth effects on preferences, expected longevity or disposable total wealth. Using HRS data, we perform a structural estimation of a dynamic model of consumption, portfolio and health expenditure choices with recursive utility, as well as health-dependent income and mortality risk. Our estimates of the deep parameters highlight the importance of health capital, mortality risk control, convex health and mortality adjustment costs and binding liquidity constraints to rationalize the stylized facts. They also provide new perspectives on expected longevity and on the values of life and health.
Resumo:
OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.