22 resultados para Distributed computer-controlled systems
Resumo:
BACKGROUND: Unexplained fatigue is often left untreated or treated with antidepressants. This randomized, placebo-controlled, single-blinded study evaluated the efficacy and tolerability of single-dose intravenous ferric carboxymaltose (FCM) in iron-deficient, premenopausal women with symptomatic, unexplained fatigue. METHODS: Fatigued women (Piper Fatigue Scale [PFS] score ≥5) with iron deficiency (ferritin <50 µg/L and transferrin saturation <20%, or ferritin <15 µg/L) and normal or borderline hemoglobin (≥115 g/L) were enrolled in 21 sites in Austria, Germany, Sweden and Switzerland, blinded to the study drug and randomized (computer-generated randomization sequence) to a single FCM (1000 mg iron) or saline (placebo) infusion. Primary endpoint was the proportion of patients with reduced fatigue (≥1 point decrease in PFS score from baseline to Day 56). RESULTS: The full analysis included 290 women (FCM 144, placebo 146). Fatigue was reduced in 65.3% (FCM) and 52.7% (placebo) of patients (OR 1.68, 95%CI 1.05-2.70; p = 0.03). A 50% reduction of PFS score was achieved in 33.3% FCM- vs. 16.4% placebo-treated patients (p<0.001). At Day 56, all FCM-treated patients had hemoglobin levels ≥120 g/L (vs. 87% at baseline); with placebo, the proportion decreased from 86% to 81%. Mental quality-of-life (SF-12) and the cognitive function scores improved better with FCM. 'Power of attention' improved better in FCM-treated patients with ferritin <15 µg/L. Treatment-emergent adverse events (placebo 114, FCM 209; most frequently headache, nasopharyngitis, pyrexia and nausea) were mainly mild or moderate. CONCLUSION: A single infusion of FCM improved fatigue, mental quality-of-life, cognitive function and erythropoiesis in iron-deficient women with normal or borderline hemoglobin. Although more side effects were reported compared to placebo, FCM can be an effective alternative in patients who cannot tolerate or use oral iron, the common treatment of iron deficiency. Overall, the results support the hypothesis that iron deficiency can affect women's health, and a normal iron status should be maintained independent of hemoglobin levels. TRIAL REGISTRATION: ClinicalTrials.gov NCT01110356.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
BACKGROUND: Existential behavioural therapy (EBT) was developed to support informal caregivers of palliative patients in the last stage of life and during bereavement as a manualised group psychotherapy comprising six sessions. We tested the effectiveness of EBT on mental stress and quality of life (QOL). METHODS: Informal caregivers were randomly assigned (1:1) to EBT or a treatment-as-usual control group using computer-generated numbers in blocks of 10. Primary outcomes were assessed with the Brief Symptom Inventory (subscales somatisation, anxiety and depression), the Satisfaction with Life Scale (SWLS), the WHOQOL-BREF and a numeric rating scale for QOL (QOL-NRS, range 0-10). Data were collected at baseline, pre-treatment, post-treatment and follow-ups after 3 and 12âeuro0/00months. Treatment effects were assessed with a multivariate analysis of covariance. RESULTS: Out of 160 relatives, 81 were assigned to EBT and 79 to the control group. Participants were 54.5âeuro0/00±âeuro0/0013.2âeuro0/00years old; 69.9% were female. The multivariate model was significant for the pre-/post-comparison (pâeuro0/00=âeuro0/000.005) and the pre-/12-month comparison (pâeuro0/00=âeuro0/000.05) but not for the pre-/3-month comparison. Medium to large effects on anxiety and QOL (SWLS, WHOQOL-BREF, QOL-NRS) were found at post-treatment; medium effects on depression and QOL (QOL-NRS) emerged in the 12-month follow-up. No adverse effects of the intervention were observed. CONCLUSION: Existential behavioural therapy appears to exert beneficial effects on distress and QOL of informal caregivers of palliative patients. Further longitudinal evidence is needed to confirm these findings. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.
Resumo:
BACKGROUND: Maintaining therapeutic concentrations of drugs with a narrow therapeutic window is a complex task. Several computer systems have been designed to help doctors determine optimum drug dosage. Significant improvements in health care could be achieved if computer advice improved health outcomes and could be implemented in routine practice in a cost effective fashion. This is an updated version of an earlier Cochrane systematic review, by Walton et al, published in 2001. OBJECTIVES: To assess whether computerised advice on drug dosage has beneficial effects on the process or outcome of health care. SEARCH STRATEGY: We searched the Cochrane Effective Practice and Organisation of Care Group specialized register (June 1996 to December 2006), MEDLINE (1966 to December 2006), EMBASE (1980 to December 2006), hand searched the journal Therapeutic Drug Monitoring (1979 to March 2007) and the Journal of the American Medical Informatics Association (1996 to March 2007) as well as reference lists from primary articles. SELECTION CRITERIA: Randomized controlled trials, controlled trials, controlled before and after studies and interrupted time series analyses of computerized advice on drug dosage were included. The participants were health professionals responsible for patient care. The outcomes were: any objectively measured change in the behaviour of the health care provider (such as changes in the dose of drug used); any change in the health of patients resulting from computerized advice (such as adverse reactions to drugs). DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data and assessed study quality. MAIN RESULTS: Twenty-six comparisons (23 articles) were included (as compared to fifteen comparisons in the original review) including a wide range of drugs in inpatient and outpatient settings. Interventions usually targeted doctors although some studies attempted to influence prescriptions by pharmacists and nurses. Although all studies used reliable outcome measures, their quality was generally low. Computerized advice for drug dosage gave significant benefits by:1.increasing the initial dose (standardised mean difference 1.12, 95% CI 0.33 to 1.92)2.increasing serum concentrations (standradised mean difference 1.12, 95% CI 0.43 to 1.82)3.reducing the time to therapeutic stabilisation (standardised mean difference -0.55, 95%CI -1.03 to -0.08)4.reducing the risk of toxic drug level (rate ratio 0.45, 95% CI 0.30 to 0.70)5.reducing the length of hospital stay (standardised mean difference -0.35, 95% CI -0.52 to -0.17). AUTHORS' CONCLUSIONS: This review suggests that computerized advice for drug dosage has some benefits: it increased the initial dose of drug, increased serum drug concentrations and led to a more rapid therapeutic control. It also reduced the risk of toxic drug levels and the length of time spent in the hospital. However, it had no effect on adverse reactions. In addition, there was no evidence to suggest that some decision support technical features (such as its integration into a computer physician order entry system) or aspects of organization of care (such as the setting) could optimise the effect of computerised advice.