110 resultados para Dimorphism (Plants)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY When exposed to heat stress, plants display a particular set of cellular and molecular responses, such as chaperones expression, which are highly conserved in all organisms. In chapter 1, I studied the ability of heat shock genes to become transiently and abundantly induced under various temperature regimes. To this aim, I designed a highly sensitive heat-shock dependent conditional gene expression system in the moss Physcomitrella patens, using the soybean heatinducible promoter (hsp17.3B). Heat-induced expression of various reporter genes was over three orders of magnitude, in tight correlation with the intensity and duration of the heat treatments. By performing repeated heating/cooling cycles, a massive accumulation of recombinant proteins was obtained. Interestingly, the hsp17.3B promoter was also activated by specific organic chemicals. Thus, in chapter 2, I took advantage of the extreme sensitivity of this promoter to small temperature variations to further address the role of various natural and organic chemicals and develop a plant based-bioassay that can serve as an early warning indicator of toxicity by pollutants and heavy metals. A screen of several organic pollutants from textile and paper industry showed that chlorophenols as well as sulfonated anthraquinones elicited a heat shock like response at noninducing temperatures. Their effects were synergistically amplified by mild elevated temperatures. In contrast to standard methods of pollutant detection, this plant-based biosensor allowed to monitor early stress-responses, in correlation with long-term toxic effect, and to attribute effective toxicity thresholds for pollutants, in a context of varying environmental cues. In chapter 3, I deepened the study of the primary mechanism by which plants sense mild temperature variations and trigger a cellular signal leading to the heat shock response. In addition to the above described heat-inducible reporter line, I generated a P. patens transgenic line to measure, in vivo, variations of cytosolic calcium during heat treatment, and another line to monitor the role of protein unfolding in heat-shock sensing and signalling. The heat shock signalling pathway was found to be triggered by the plasma membrane, where temperature up shift specifically induced the transient opening of a putative high afimity calcium channel. The calcium influx triggered a signalling cascade leading to the activation of the heat shock genes, independently on the presence of misfolded proteins in the cytoplasm. These results strongly suggest that changes in the fluidity of the plasma membrane are the primary trigger of the heatshocksignalling pathway in plants. The present thesis contributes to the understanding of the basic mechanism by which plants perceive and respond to heat and chemical stresses. This may contribute to developing appropriate better strategies to enhance plant productivity under the increasingly stressful environment of global warming. RÉSUME Les plantes exposées à des températures élevées déclenchent rapidement des réponses cellulaires qui conduisent à l'induction de gènes codant pour les heat shock proteins (HSPs). En fonction de la durée d'exposition et de la vitesse à laquelle la température augmente, les HSPs sont fortement et transitoirement induites. Dans le premier chapitre, cette caractéristique aété utilisée pour développer un système inductible d'expression de gènes dans la mousse Physcomitrella patens. En utilisant plusieurs gènes rapporteurs, j'ai montré que le promoteur du gène hsp17.3B du Soja est activé d'une manière. homogène dans tous les tissus de la mousse proportionnellement à l'intensité du heat shock physiologique appliqué. Un très fort taux de protéines recombinantes peut ainsi être produit en réalisant plusieurs cycles induction/recovery. De plus, ce promoteur peut également être activé par des composés organiques, tels que les composés anti-inflammatoires, ce qui constitue une bonne alternative à l'induction par la chaleur. Les HSPs sont induites pour remédier aux dommages cellulaires qui surviennent. Étant donné que le promoteur hsp17.3B est très sensible à des petites augmentations de température ainsi qu'à des composés chimiques, j'ai utilisé les lignées développées dans le chapitre 1 pour identifier des polluants qui déclenchent une réaction de défense impliquant les HSPs. Après un criblage de plusieurs composés, les chlorophénols et les antraquinones sulfonés ont été identifiés comme étant activateurs du promoteur de stress. La détection de leurs effets a été réalisée seulement après quelques heures d'exposition et corrèle parfaitement avec les effets toxiques détectés après de longues périodes d'exposition. Les produits identifiés montrent aussi un effet synergique avec la température, ce qui fait du biosensor développé dans ce chapitre un bon outil pour révéler les effets réels des polluants dans un environnement où les stress chimiques sont combinés aux stress abiotiques. Le troisième chapitre est consacré à l'étude des mécanismes précoces qui permettent aux plantes de percevoir la chaleur et ainsi de déclencher une cascade de signalisation spécifique qui aboutit à l'induction des gènes HSPs. J'ai généré deux nouvelles lignées afin de mesurer en temps réel les changements de concentrations du calcium cytosolique ainsi que l'état de dénaturation des protéines au cours du heat shock. Quand la fluidité de la membrane augmente après élévation de la température, elle semble induire l'ouverture d'un canal qui permet de faire entrer le calcium dans les cellules. Ce dernier initie une cascade de signalisation qui finit par activer la transcription des gènes HSPs indépendamment de la dénaturation de protéines cytoplasmiques. Les résultats présentés dans ce chapitre montrent que la perception de la chaleur se fait essentiellement au niveau de la membrane plasmique qui joue un rôle majeur dans la régulation des gènes HSPs. L'élucidation des mécanismes par lesquels les plantes perçoivent les signaux environnementaux est d'une grande utilité pour le développement de nouvelles stratégies afin d'améliorer la productivité des plantes soumises à des conditions extrêmes. La présente thèse contribue à décortiquer la voie de signalisation impliquée dans la réponse à la chaleur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim  We test for the congruence between allele-based range boundaries (break zones) in silicicolous alpine plants and species-based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation.Location  The European Alps.Methods  On a regular grid laid across the entire Alps, we determined areas of allele- and species-based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra-specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman's correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation.Results  We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long-distance dispersal tended to show larger distribution ranges than short-distance dispersers.Main conclusions  We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele-based and species-based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post-glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones.Conny Thiel-Egenter and Nadir Alvarez contributed equally to this paper and are considered joint first authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis E virus (HEV) is responsible for many enterically transmitted viral hepatitides around the world. It is currently one of the waterborne diseases of global concern. In industrialized countries, HEV appears to be more common than previously thought, even if it is rarely virulent. In Switzerland, seroprevalence studies revealed that HEV is endemic, but no information was available on its environmental spread. The aim of this study was to investigate -using qPCR- the occurrence and concentration of HEV and three other viruses (norovirus genogroup II, human adenovirus-40 and porcine adenovirus) in influents and effluents of 31 wastewater treatment plants (WWTPs) in Switzerland. Low concentrations of HEV were detected in 40 out of 124 WWTP influent samples, showing that HEV is commonly present in this region. The frequency of HEV occurrence was higher in summer than in winter. No HEV was detected in WWTP effluent samples, which indicates a low risk of environmental contamination. HEV occurrence and concentrations were lower than those of norovirus and adenovirus. The autochthonous HEV genotype 3 was found in all positive samples, but a strain of the non-endemic and highly pathogenic HEV genotype I was isolated in one sample, highlighting the possibility of environmental circulation of this genotype. A porcine fecal marker (porcine adenovirus) was not detected in HEV positive samples, indicating that swine are not the direct source of HEV present in wastewater. Further investigations will be necessary to determine the reservoirs and the routes of dissemination of HEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Spanish sand racer (Psammodromus hispanicus) has been recently split into three distinct species: P. hispanicus, P. edwardsianus, and P. occidentalis. Some morphological differences have been reported but there is as yet no description allowing unambiguous identification of the three species. Here, we describe differentiation in body measurements, scalation traits, and colour traits as well as in the degree of sexual dimorphism. Our results show that P. edwardsianus can be easily distinguished by the presence of a supralabial scale below the subocular scale, which is absent in the other two species. Psammodromus hispanicus and P. occidentalis can be distinguished by the number of femoral pores, throat scales and ocelli, and the relative width of the anal scale. The degree of sexual size dimorphism and sexual colour dimorphism substantially differs among species, suggesting that different scenarios of sexual and natural selection may exist for each species. Moreover, sexually selected traits (nuptial colouration, ocelli, and femoral pores) significantly differ among species, suggesting that visual and chemical communication may also differ among species. Such differences could prevent reproduction and gene flow at secondary contact zones, potentially reinforcing isolation and speciation within this group of lizards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic Arabidopsis thaliana (L.) Heynh. plants expressing the three enzymes encoding the biosynthetic route to polyhydroxybutyrate (PHB) are described. These plants accumulated more than 4% of their fresh weight (approximately 40% of their dry weight) in the form of PHB in leaf chloroplasts. These very high producers were obtained and identified following a novel strategy consisting of a rapid GC-MS analysis of a large number of transgenic Arabidopsis plants generated using a triple construct, thus allowing the parallel transfer of all three genes necessary for PHB synthesis in a single transformation event. The level of PHB produced was 4-fold greater than previously published values, thus demonstrating the large potential of plants to produce this renewable resource. However, the high levels of the polymer produced had severe effects on both plant development and metabolism. Stunted growth and a loss of fertility were observed in the high-producing lines. Analysis of the metabolite composition of these lines using a GC-MS method that we have newly developed showed that the accumulation of high levels of PHB was not accompanied by an appreciable change in either the composition or the amount of fatty acids. Substantial changes were, however, observed in the levels of various organic acids, amino acids, sugars and sugar alcohols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework.Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar transport of the signaling molecule auxin is critical for plant development and depends on both the polar distribution of auxin efflux carriers, which pump auxin out of the cell and the alignment of these polarized cells. Two papers in this issue of Cell (Michniewicz et al., 2007; Jaillais et al., 2007) address how polar transport of these carriers occurs and describe the endosomal pathways involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant metabolic engineering has recently enabled the synthesis of a range of polyhydroxyalkanoates as well as a protein-based polymer. These novel compounds can be harvested from plants as a renewable source of environmentally friendly polymers or can be used to change the physical properties of plant products, such as fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often thought that the coexistence of plants and plant diversity is determined by resource heterogeneity of the abiotic environment. However, the presence and heterogeneity of biotic plant resources, such as arbuscular mycorrhizal fungi (AMF), could also affect plant species coexistence. In this study, Brachypodium pinnatum and Prunella vulgaris were grown together in pots and biotic resource heterogeneity was simulated by inoculating these pots with one of three different AMF taxa, with a mixture of these three taxa, or pots remained uninoculated. The AMF acted as biotic plant resources since the biomass of plants in pots inoculated with AMF was on average 11.8 times higher than uninoculated pots. The way in which the two plant species coexisted, and the distribution of phosphorus and nitrogen between the plant species, varied strongly depending on which AMF were present. The results showed that the composition of AMF communities determines how plant species coexist and to which plant species nutrients are allocated. Biotic plant resources such as AMF should therefore be considered as one of the factors that determine how plant species coexist and how soil resources are distributed among co-occurring plant species.