96 resultados para Digital preservation -- Congresses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractDigitalization gives to the Internet the power by allowing several virtual representations of reality, including that of identity. We leave an increasingly digital footprint in cyberspace and this situation puts our identity at high risks. Privacy is a right and fundamental social value that could play a key role as a medium to secure digital identities. Identity functionality is increasingly delivered as sets of services, rather than monolithic applications. So, an identity layer in which identity and privacy management services are loosely coupled, publicly hosted and available to on-demand calls could be more realistic and an acceptable situation. Identity and privacy should be interoperable and distributed through the adoption of service-orientation and implementation based on open standards (technical interoperability). Ihe objective of this project is to provide a way to implement interoperable user-centric digital identity-related privacy to respond to the need of distributed nature of federated identity systems. It is recognized that technical initiatives, emerging standards and protocols are not enough to guarantee resolution for the concerns surrounding a multi-facets and complex issue of identity and privacy. For this reason they should be apprehended within a global perspective through an integrated and a multidisciplinary approach. The approach dictates that privacy law, policies, regulations and technologies are to be crafted together from the start, rather than attaching it to digital identity after the fact. Thus, we draw Digital Identity-Related Privacy (DigldeRP) requirements from global, domestic and business-specific privacy policies. The requirements take shape of business interoperability. We suggest a layered implementation framework (DigldeRP framework) in accordance to model-driven architecture (MDA) approach that would help organizations' security team to turn business interoperability into technical interoperability in the form of a set of services that could accommodate Service-Oriented Architecture (SOA): Privacy-as-a-set-of- services (PaaSS) system. DigldeRP Framework will serve as a basis for vital understanding between business management and technical managers on digital identity related privacy initiatives. The layered DigldeRP framework presents five practical layers as an ordered sequence as a basis of DigldeRP project roadmap, however, in practice, there is an iterative process to assure that each layer supports effectively and enforces requirements of the adjacent ones. Each layer is composed by a set of blocks, which determine a roadmap that security team could follow to successfully implement PaaSS. Several blocks' descriptions are based on OMG SoaML modeling language and BPMN processes description. We identified, designed and implemented seven services that form PaaSS and described their consumption. PaaSS Java QEE project), WSDL, and XSD codes are given and explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on advanced dual-wavelength digital holographic microscopy (DHM) methods, enabling single-acquisition real-time micron-range measurements while maintaining single-wavelength interferometric resolution in the nanometer regime. In top of the unique real-time capability of our technique, it is shown that axial resolution can be further increased compared to single-wavelength operation thanks to the uncorrelated nature of both recorded wavefronts. It is experimentally demonstrated that DHM topographic investigation within 3 decades measurement range can be achieved with our arrangement, opening new applications possibilities for this interferometric technique. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Holographic Microscopy (DHM), is a new imaging technique allowing to provide quantitative phase images with a high accuracy and stability making possible to explore a large variety of relevant processes, occurring on the p.s to day time scale, in the fields including material research as well as cell biology. As a non invasive and real time imaging technique, DHM is particularly well suited for high throughput screening

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In the Rd1 and Rd10 mouse models of retinitis pigmentosa, a mutation in the Pde6ß gene leads to the rapid loss of photoreceptors. As in several neurodegenerative diseases, Rd1 and Rd10 photoreceptors re-express cell cycle proteins prior to death. Bmi1 regulates cell cycle progression through inhibition of CDK inhibitors, and its deletion efficiently rescues the Rd1 retinal degeneration. The present study evaluates the effects of Bmi1 loss in photoreceptors and Müller glia, since in lower vertebrates, these cells respond to retinal injury through dedifferentiation and regeneration of retinal cells. Methods: Cell death and Müller cell activation were analyzed by immunostaining of wild-type, Rd1 and Rd1;Bmi1-/- eye sections during retinal degeneration, between P10 and P20. Lineage tracing experiments use the GFAP-Cre mouse (JAX) to target Müller cells. Results: In Rd1 retinal explants, inhibition of CDKs reduces the amount of dying cells. In vivo, Bmi1 deletion reduces CDK4 expression and cell death in the P15 Rd1;Bmi1-/- retina, although cGMP accumulation and TUNEL staining are detected at the onset of retinal degeneration (P12). This suggests that another process acts in parallel to overcome the initial loss of Rd1;Bmi1-/- photoreceptors. We demonstrate here that Bmi1 loss in the Rd1 retina enhances the activation of Müller glia by downregulation of p27Kip1, that these cells migrate toward the ONL, and that some cells express the retinal progenitor marker Pax6 at the inner part of the ONL. These events are also observed, but to a lesser extent, in Rd1 and Rd10 retinas. At P12, EdU incorporation shows proliferating cells with atypical elongated nuclei at the inner border of the Rd1;Bmi1-/- ONL. Lineage tracing targeting Müller cells is in process and will determine the implication of this cell population in the maintenance of the Rd1;Bmi1-/- ONL thickness and whether downregulation of Bmi1 in Rd10 Müller cells equally stimulates their activation. Conclusions: Our results show a dual role of Bmi1 deletion in the rescue of photoreceptors in the Rd1;Bmi1-/- retina. Indeed, the loss of Bmi1 reduces Rd1 retinal degeneration, and as well, enhances the Müller glia activation. In addition, the emergence of cells expressing a retinal progenitor marker in the ONL suggests Bmi1 as a blockade to the regeneration of retinal cells in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: During hibernation the kidney is in a hypothermic condition where renal blood flow is minimal and urine production is much reduced. Periodical arousal from hibernation is associated with kidney reperfusion at increasing body temperature, and restored urine production rate. METHODS: To assess the degree of structural preservation during such extreme conditions, the kidney cortex was investigated by means of electron microscopy in the dormouse Muscardinus avellanarius during winter hibernation, arousal from hibernation and the summer active period. RESULTS: Results show that the fine structure of the kidney cortex is well preserved during hibernation. In the renal corpuscle, a sign of slight lesion was the focal presence of oedematous endothelial cells and/or podocytes. Proximal convoluted tubule cells showed fully preserved ultrastructure and polarity, and hypertrophic apical endocytic apparatus. Structural changes were associated with increased plasma electrolytes, creatinine and urea nitrogen, and proteinuria. During the process of arousal the fine structure of the kidney cortex was also well maintained. CONCLUSION: These results demonstrate that dormice are able to fully preserve kidney cortex structure under extreme conditions resembling e.g. severe ischaemia or hypothermic organ storage for transplantation, and reperfusion. Elucidation of the mechanisms involved in such a natural model of organ preservation could be relevant to human medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvement in cancer treatments resulted in an increased number of men surviving cancer. Quality of life has become an important issue in these patients. Anti cancer treatments might have transient or definitive harmful effects on male fertility. Sperm cryoconservation is currently the only proven method to preserve fertility in patients undergoing oncologic treatment. It should be proposed to every patient at reproductive age before chemotherapy, radiotherapy or any surgery involving reproductive tract. Despite low use rate, this simple method could allow patients presenting infertility after treatment to father a child.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: In this study the accuracy of multislice computerized tomography (MSCT) angiography in the postoperative examination of clip-occluded intracranial aneurysms was compared with that of intraarterial digital subtraction (DS) angiography METHODS: Forty-nine consecutive patients with 60 clipped aneurysms (41 of which had ruptured) were studied with the aid of postoperative MSCT and DS angiography. Both types of radiological studies were reviewed independently by two observers to assess the quality of the images, the artifacts left by the clips, the completeness of aneurysm occlusion, the patency of the parent vessel, and the duration and cost of the examination. The quality of MSCT angiography was good in 42 patients (86%). Poor-quality MSCT angiograms (14%) were a result of the late acquisition of images in three patients and the presence of clip or motion artifacts in four. Occlusion of the aneurysm on good-quality MSCT angiograms was confirmed in all but two patients in whom a small (2-mm) remnant was confirmed on DS angiograms. In one patient, occlusion of a parent vessel was seen on DS angiograms but missed on MSCT angiograms. The sensitivity and specificity for detecting neck remnants on MSCT angiography were both 100%, and the sensitivity and specificity for evaluating vessel patency were 80 and 100%, respectively (95% confidence interval 29.2-100%). Interobserver agreements were 0.765 and 0.86, respectively. The mean duration of the examination was 13 minutes for MSCT angiography and 75 minutes for DS angiography (p < 0.05). Multislice CT angiography was highly cost effective (p < 0.01). CONCLUSIONS: Current-generation MSCT angiography is an accurate noninvasive tool used for assessment of clipped aneurysms in the anterior circulation. Its high sensitivity and low cost warrant its use for postoperative routine control examinations following clip placement on an aneurysm. Digital subtraction angiography must be performed if the interpretation of MSCT angiograms is doubtful or if the aneurysm is located in the posterior circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital holography microscopy (DHM) is an optical microscopy technique which allows recording non-invasively the phase shift induced by living cells with nanometric sensitivity. Here, we exploit the phase signal as an indicator of dry mass (related to the protein concentration). This parameter allows monitoring the protein production rate and its evolution during the cell cycle. ©2008 COPYRIGHT SPIE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:To functionally and morphologically characterize the retina and optic nerve after transplantation of Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) secreting mesenchymal stem cells (MSCs) into glaucomatous rat eyes. Methods:Chronic ocular hypertension (COH) was induced in Brown Norway rats. Lentiviral constructs were used to transduce rat MSCs to produce BDNF, GDNF, or green fluorescent protein (GFP). The fellow eyes served as internal controls. Two days following COH induction, eyes received intravitreal injections of transduced MSCs. Electroretinography was performed to assess retinal function. Tonometry was performed throughout the experiment to monitor IOP. 42 days after MSC transplantation, rats were euthanized and the eyes and optic nerves were prepared for analysis. Results:Increased expression and secretion of BDNF and GDNF from lentiviral-transduced MSCs was verified using ELISA, and a bioactivity assay. Ratio metric analysis (COH eye/ Internal control eye response) of the Max combined response A-Wave showed animals with BDNF-MSCs (23.35 ± 5.15%, p=0.021) and GDNF-MSCs (28.73 ± 3.61%, p=0.025) preserved significantly more visual function than GFP-MSC treated eyes MSCs (18.05 ± 5.51%). Animals receiving BDNF-MSCs also had significantly better B-wave (33.80 ± 7.19%) and flicker ERG responses (28.52 ± 10.43%) than GFP-MSC treated animals (14.06 ± 12.67%; 3.52 ± 0.07%, respectively). Animals receiving GDNF-MSC transplants tended to have better function than animals with GFP-MSC transplants, but were not statistically significant (p=0.057 and p=0.0639). Conclusions:Mesenchymal stem cells are an excellent source of cells for autologous transplantation for the treatment of neurodegenerative diseases. We have demonstrated that lentiviral- transduced MSCs can survive following transplantation and preserve visual function in glaucomatous eyes. These results suggest that MSCs may be an ideal cellular vehicle for delivery of specific neurotrophic factors to the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of classical studies has undergone a radical transformation with the arrival of the digital age, particularly with regard to the editing of ancient texts. As Umberto Eco (2003) pointed out, the digital age may mean the end of the history of variants and of the notion of the "original text." Among the texts of antiquity, the editing of Homer and of the New Testament are more especially susceptible to the effects of digital technology because of their numerous manuscripts. Whereas the "Homer Multitext" project recognizes that the notion of a synthetic critical edition is now seriously brought into question, the prototype of the online Greek New Testament continues to be based on the aim of obtaining a unique text, in the style of a printed critical edition. As it moves from a printed culture to the digital age, the editing of the Greek NT is also confronted by the emergence of non-Western scholarship. For example, the presence is to be noted of Arabic Muslim websites that examine Greek New Testament manuscripts but without directly interacting with Western scholarship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present first results on a method enabling mechanical scanning-free tomography with submicrometer axial resolution by multiple-wavelength digital holographic microscopy. By sequentially acquiring reflection holograms and summing 20 wavefronts equally spaced in spatial frequency in the 485-670 nm range, we are able to achieve a slice-by-slice tomographic reconstruction with a 0.6-1 mum axial resolution in a biological medium. The method is applied to erythrocytes investigation to retrieve the cellular membrane profile in three dimensions.