44 resultados para Data-Information-Knowledge Chain
Resumo:
The ground-penetrating radar (GPR) geophysical method has the potential to provide valuable information on the hydraulic properties of the vadose zone because of its strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR traveltime data can allow for a significant reduction in uncertainty regarding subsurface van Genuchten-Mualem (VGM) parameters. Much of the previous work on the stochastic estimation of VGM parameters from crosshole GPR data has considered the case of steady-state infiltration conditions, which represent only a small fraction of practically relevant scenarios. We explored in detail the dynamic infiltration case, specifically examining to what extent time-lapse crosshole GPR traveltimes, measured during a forced infiltration experiment at the Arreneas field site in Denmark, could help to quantify VGM parameters and their uncertainties in a layered medium, as well as the corresponding soil hydraulic properties. We used a Bayesian Markov-chain-Monte-Carlo inversion approach. We first explored the advantages and limitations of this approach with regard to a realistic synthetic example before applying it to field measurements. In our analysis, we also considered different degrees of prior information. Our findings indicate that the stochastic inversion of the time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions compared with the corresponding priors, which in turn significantly improves knowledge of soil hydraulic properties. Overall, the results obtained clearly demonstrate the value of the information contained in time-lapse GPR data for characterizing vadose zone dynamics.
Resumo:
Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.
Resumo:
BACKGROUND: Healthcare professionals regularly read the summary of product characteristics (SmPC) as one of the various sources of information on the risks of drug use in women of childbearing age and during pregnancy. The aim of this article is to present an overview of the teratogenic potential of various antiepileptic drugs and to compare these data with the information provided by the SmPCs. METHODS: A literature search on the teratogenic risks of 19 antiepileptic agents was conducted and the results were compared with the information on the use in women of childbearing age and during pregnancy provided by the SmPCs of 38 commercial products available in Switzerland and Germany. RESULTS: The teratogenic risk is discussed in all available SmPCs. Quantification of the risk for birth defects and the numbers of documented pregnancies are mostly missing. Reproductive safety information in SmPCs showed poor concordance with risk levels reported in the literature. Recommendations concerning the need to monitor plasma levels and possibly perform dose adjustments during pregnancy to prevent treatment failure were missing in five Swiss and two German SmPCs. DISCUSSION: The information regarding use in women of childbearing age and during pregnancy provided by the SmPCs is heterogeneous and poorly reflects the current state of knowledge. Regular updates of SmPCs are warranted in order for these documents to be of reliable use for health care professionals.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
The assessment of medical technologies has to answer several questions ranging from safety and effectiveness to complex economical, social, and health policy issues. The type of data needed to carry out such evaluation depends on the specific questions to be answered, as well as on the stage of development of a technology. Basically two types of data may be distinguished: (a) general demographic, administrative, or financial data which has been collected not specifically for technology assessment; (b) the data collected with respect either to a specific technology or to a disease or medical problem. On the basis of a pilot inquiry in Europe and bibliographic research, the following categories of type (b) data bases have been identified: registries, clinical data bases, banks of factual and bibliographic knowledge, and expert systems. Examples of each category are discussed briefly. The following aims for further research and practical goals are proposed: criteria for the minimal data set required, improvement to the registries and clinical data banks, and development of an international clearinghouse to enhance information diffusion on both existing data bases and available reports on medical technology assessments.
Resumo:
NanoImpactNet (NIN) is a multidisciplinary European Commission funded network on the environmental, health and safety (EHS) impact of nanomaterials. The 24 founding scientific institutes are leading European research groups active in the fields of nanosafety, nanorisk assessment and nanotoxicology. This 4−year project is the new focal point for information exchange within the research community. Contact with other stakeholders is vital and their needs are being surveyed. NIN is communicating with 100s of stakeholders: businesses; internet platforms; industry associations; regulators; policy makers; national ministries; international agencies; standard−setting bodies and NGOs concerned by labour rights, EHS or animal welfare. To improve this communication, internet research, a questionnaire distributed via partners and targeted phone calls were used to identify stakeholders' interests and needs. Knowledge gaps and the necessity for further data mentioned by representatives of all stakeholder groups in the targeted phone calls concerned: potential toxic and safety hazards of nanomaterials throughout their lifecycles; fate and persistence of nanoparticles in humans, animals and the environment; risks associated to nanoparticle exposure; participation in the preparation of nomenclature, standards, methodologies, protocols and benchmarks; development of best practice guidelines; voluntary schemes on responsibility; databases of materials, research topics and themes. Findings show that stakeholders and NIN researchers share very similar knowledge needs, and that open communication and free movement of knowledge will benefit both researchers and industry. Consequently NIN will encourage stakeholders to be active members. These survey findings will be used to improve NIN's communication tools to further build on interdisciplinary relationships towards a healthy future with nanotechnology.
Resumo:
This prospective study applies an extended Information-Motivation-Behavioural Skills (IMB) model to establish predictors of HIV-protection behaviour among HIV-positive men who have sex with men (MSM) during sex with casual partners. Data have been collected from anonymous, self-administered questionnaires and analysed by using descriptive and backward elimination regression analyses. In a sample of 165 HIV-positive MSM, 82 participants between the ages of 23 and 78 (M=46.4, SD=9.0) had sex with casual partners during the three-month period under investigation. About 62% (n=51) have always used a condom when having sex with casual partners. From the original IMB model, only subjective norm predicted condom use. More important predictors that increased condom use were low consumption of psychotropics, high satisfaction with sexuality, numerous changes in sexual behaviour after diagnosis, low social support from friends, alcohol use before sex and habitualised condom use with casual partner(s). The explanatory power of the calculated regression model was 49% (p<0.001). The study reveals the importance of personal and social resources and of routines for condom use, and provides information for the research-based conceptualisation of prevention offers addressing especially people living with HIV ("positive prevention").
Resumo:
The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.
Resumo:
This study on determinants of sexual protection behavior among HIV-positive gay men used the empirically tested information-motivation-behavioral skills (IMB) model. HIV-specific variables were added to the model to determine factors decisive for condom use with steady and casual partners. Data were collected using an anonymous, standardized self-administered questionnaire. Study participants were recruited at HIV outpatient clinics associated with the Eurosupport Study Group and the Swiss HIV Cohort Study. To identify factors associated with condom use, backward elimination regression analyses were performed. Overall, 838 HIV-infected gay men from 14 European countries were included in this analysis. About 53% of them reported at least one sexual contact with a steady partner; 62.5% had sex with a casual partner during the last 6 months. Forty-three percent always used condoms with steady partners and 44% with casual partners. High self-efficacy and subjective norms in favor of condom-use were associated with increased condom use with casual and steady partners, whereas feeling depressed was associated with decreased condom use with casual partners. Condoms were used less often with HIV-positive partners. Self-efficacy as an important behavioral skill to perform protection behavior was influenced by lower perceived vulnerability, higher subjective norms, and more positive safer sex attitudes. The IMB-model constructs appeared to be valid; however, not all the model predictors could be determined as hypothesized. Besides the original IMB constructs, HIV-specific variables, including sexual partners' serostatus and mental health, explained condom use. Such factors should be considered in clinical interventions to promote "positive prevention."
Resumo:
On 9 October 1963 a catastrophic landslide suddenly occurred on the southern slope of the Vaiont dam reservoir. A mass of approximately 270 million m3 collapsed into the reservoir generating a wave that overtopped the dam and hit the town of Longarone and other villages nearby. Several investigations and interpretations of the slope collapse have been carried out during the last 45 years, however, a comprehensive explanation of both the triggering and the dynamics of the phenomenon has yet to be provided. In order to re-evaluate the currently existing information on the slide, an electronic bibliographic database and an ESRI-geodatabase have been developed. The chronology of the collected documentation showed that most of the studies for re-evaluating the failure mechanisms were conducted in the last decade, as a consequence of knowledge, methods and techniques recently acquired. The current contents of the geodatabase will improve definition of the structural setting that influenced the slide and led to the the propagation of the displaced rock mass. The objectives, structure and contents of the e-bibliography and Geodatabase are indicated, together with a brief description on the possible use of the alphanumeric and spatial contents of the databases.
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.
Resumo:
Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.
Resumo:
Classical treatments of problems of sequential mate choice assume that the distribution of the quality of potential mates is known a priori. This assumption, made for analytical purposes, may seem unrealistic, opposing empirical data as well as evolutionary arguments. Using stochastic dynamic programming, we develop a model that includes the possibility for searching individuals to learn about the distribution and in particular to update mean and variance during the search. In a constant environment, a priori knowledge of the parameter values brings strong benefits in both time needed to make a decision and average value of mate obtained. Knowing the variance yields more benefits than knowing the mean, and benefits increase with variance. However, the costs of learning become progressively lower as more time is available for choice. When parameter values differ between demes and/or searching periods, a strategy relying on fixed a priori information might lead to erroneous decisions, which confers advantages on the learning strategy. However, time for choice plays an important role as well: if a decision must be made rapidly, a fixed strategy may do better even when the fixed image does not coincide with the local parameter values. These results help in delineating the ecological-behavior context in which learning strategies may spread.