142 resultados para DROP-OUTS
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
We present a new method for lysis of single cells in continuous flow, where cells are sequentially trapped, lysed and released in an automatic process. Using optimized frequencies, dielectrophoretic trapping allows exposing cells in a reproducible way to high electrical fields for long durations, thereby giving good control on the lysis parameters. In situ evaluation of cytosol extraction on single cells has been studied for Chinese hamster ovary (CHO) cells through out-diffusion of fluorescent molecules for different voltage amplitudes. A diffusion model is proposed to correlate this out-diffusion to the total area of the created pores, which is dependent on the potential drop across the cell membrane and enables evaluation of the total pore area in the membrane. The dielectrophoretic trapping is no longer effective after lysis because of the reduced conductivity inside the cells, leading to cell release. The trapping time is linked to the time required for cytosol extraction and can thus provide additional validation of the effective cytosol extraction for non-fluorescent cells. Furthermore, the application of one single voltage for both trapping and lysis provides a fully automatic process including cell trapping, lysis, and release, allowing operating the device in continuous flow without human intervention.
Resumo:
Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called 'virtual CT' to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum temperature elevation in the phantom (7% relative drop). Without any correction, the maximum temperature was down 6 °C (43% relative drop). We have developed an approach that allows for a reconstruction of a virtual CT dataset from MRI to perform phase correction in TcMRgFUS.
Resumo:
What genotype should the scientist specify for conducting a database search to try to find the source of a low-template-DNA (lt-DNA) trace? When the scientist answers this question, he or she makes a decision. Here, we approach this decision problem from a normative point of view by defining a decision-theoretic framework for answering this question for one locus. This framework combines the probability distribution describing the uncertainty over the trace's donor's possible genotypes with a loss function describing the scientist's preferences concerning false exclusions and false inclusions that may result from the database search. According to this approach, the scientist should choose the genotype designation that minimizes the expected loss. To illustrate the results produced by this approach, we apply it to two hypothetical cases: (1) the case of observing one peak for allele xi on a single electropherogram, and (2) the case of observing one peak for allele xi on one replicate, and a pair of peaks for alleles xi and xj, i ≠ j, on a second replicate. Given that the probabilities of allele drop-out are defined as functions of the observed peak heights, the threshold values marking the turning points when the scientist should switch from one designation to another are derived in terms of the observed peak heights. For each case, sensitivity analyses show the impact of the model's parameters on these threshold values. The results support the conclusion that the procedure should not focus on a single threshold value for making this decision for all alleles, all loci and in all laboratories.
Resumo:
OBJECTIVES: Perioperative fluid accumulation determination is a challenge for the clinician. Bioelectrical impedance analysis (BIA) is a noninvasive method based on the electrical properties of tissues, which can assess body fluid compartments. The study aimed at assessing their changes in three types of surgery (thoracic, abdominal, and intracranial) requiring various regimens of fluid administration. DESIGN: Prospective descriptive trial. PATIENTS: A total of 26 patients scheduled for elective surgery were separated into three groups according to site of surgery: thoracic (n = 8), abdominal aortic (n = 8), and brain surgery (n = 10). SETTING: University teaching hospital. INTERVENTION: None. MEASUREMENTS: Whole body, segmental (arm, trunk, and legs) BIA at multiple frequency (0.5, 50, 100 kHz) was used to assess perioperative fluid accumulation after surgery. The fluid balances were calculated from the charts. RESULTS: The patients were aged 62+/-4 yrs. Fluid balances were 4.8+/-1.0 L, 4.1+/-0.5 L, and 1.9+/-0.3 L, respectively, in the three groups. In trunk surgery patients, fluid accumulation was detected as a drop in impedance in the operated area at all frequencies. In the operated area, there was an expansion of both intra- and extracellular compartments. A reduction in high frequencies' impedance in the legs was only detected after aortic surgery. Fluid accumulation and trunk impedance changes were strongly correlated. Neurosurgery only induced minor body fluid changes. CONCLUSIONS: Segmental BIA is able to detect and localize perioperative fluid accumulation. It may become a bedside tool to quantify and to localize fluid accumulation.
Resumo:
Background: A nti-TNF d rugs (Infliximab (IFX), Adalimumab (ADA), Certolizumab pegol (CZP)) are effective in inducing and maintaining response a nd remission in i nflammatory bowel disease (IBD). Insufficient response or side effects may lead to a switch o f the anti-TNF d rug. W e aimed to e valuate the frequency and reasons for anti-TNF switches. Methods: Analysis of data from the Swiss Inflammatory Bowel Disease Cohort (SIBDCS). Eighty percent of included patients were recruited in hospitals and 20% from private practice. Results: From 2,058 patients ( 1,172 with Crohn's disease (CD), 842 with ulcerative colitis (UC) and 44 with indeterminate colitis (IC)), 772 received at least one anti-TNF. Forty-eight % of patients w ith CD, 23% with U C, a nd 30% with IC w ere ever treated with an anti-TNF drug. There was no gender difference with respect to the frequency of a nti-TNF treatment. A total of 584 patients (76%) were treated with one, 142 (18%) with two, and 46 (6%) with three anti-TNF (of which 32 were female). A total of 89% patients were treated with IFX, 28% ADA and 13% with CZP. Overall response rate (defined as drop in CDAI >100 points) to anti-TNF was 50%, with best response rates for the first used anti-TNF. Reasons t o switch t he anti-TNF w ere in 11% a primary non-response, in 38% a loss of response and in 36% anti-TNF s ide effects o r intolerance ( reasons for 15% of treatment failures not documented). Conclusion: A nti-TNF d rugs were used in h alf of the CD patients a nd in o ne quarter of U C patients. Anti-TNF d rug switch d ue to insufficient response a nd/or side effects w as necessary in one quarter of IBD patients. IFX was mainly used as first-line therapy. Best response rates were observed for the first used anti-TNF. Following analyses will identify risk median treatment duration as well as risk factors for anti-TNF switch.
Resumo:
Access to information legislations are now present in over 50 countries world-wide. Lagging behind some of its own Cantons, the Swiss Federal government was until recently one of the few hold outs in Europe. But, in December 2004, the Confederation voted the 'Loi sur la Transparence de l'administration' or Law on Transparency (LTrans) a Law that came into effect in July 2006. This paper presents an overview of the new Law and underlines the main institutional challenges to its introduction in Switzerland.
Resumo:
Atrial natriuretic peptides (ANP) exert vasodilating and natriuretic actions. The present study was undertaken to test the effect of low dose infusions of synthetic ANP on hemodynamic and humoral variables of patients with severe heart failure. Eight patients, aged 26 to 71 years, with severe congestive heart failure due to ischemic heart disease or idiopathic dilated cardiomyopathy were included in the study. Synthetic human (3-28) ANP was infused at doses ranging from 0.5 to 2 micrograms/min for up to 3 h. Pulmonary capillary wedge pressure fell from 24 +/- 1 to 16 +/- 2 mm Hg (mean +/- SEM) (p less than 0.01) and cardiac index tended to rise from 2 +/- 0.2 to 2.3 +/- 0.2 L/min/m2 (NS), while blood pressure and heart rate did not change. One patient experienced a marked drop in pulmonary capillary wedge and arterial blood pressure that necessitated the administration of saline. ANP infusion did not alter plasma renin activity or plasma aldosterone, norepinephrine, or vasopressin levels. It decreased plasma epinephrine levels from 0.472 +/- 0.077 to 0.267 +/- 0.024 nmol/L (p less than 0.05). Plasma ANP levels were markedly elevated in all patients before initiating the infusion. They had no predictive value for the hemodynamic response to exogenous ANP. No correlation was observed between the hemodynamic effects of ANP and those induced by the subsequently administered converting enzyme inhibitor captopril, which seemed to improve cardiac function more consistently.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.
Resumo:
The Admiral, a new microporous membrane oxygenator with a low surface area, decreased priming volume and two separate reservoirs, was tested in 30 adult patients. This study was undertaken to evaluate blood path resistance, gas exchange capabilities and blood trauma in clinical use, with and without shed blood separation. Patients were divided into 3 groups. Group 1 had valve surgery without separation of suction, Group 2 had coronary artery bypass grafting (CABG) with direct blood aspiration and Group 3 had coronary artery bypass grafting with shed blood separation. The suctioned, separated, cardiotomy blood in Group 3 was treated with an autotransfusion device at the end of bypass before being returned to the patient. Theoretical blood flow could be achieved in all cases without problem. The pressure drop through the oxygenator averaged 88 +/- 13 mmHg at 4 l/min and 109 +/- 12 mmHg at 5 l/min. O(2) transfer was 163 +/- 27 ml/min. Free plasma haemoglobin rose in all groups, but significantly less in group 3. Lactate dehydrogenase (LDH) rose significantly in Groups 1 and 2. Platelets decreased in all groups without significant differences. Clinical experience with this new oxygenator was safe, the reduced membrane surface did not impair gas exchange and blood trauma could be minimized easily by separating shed blood, using the second cardiotomy reservoir.
Resumo:
Purpose: To phenotype a large 3 generation Swiss family with pattern dystrophy and to report a successful result of treatment with ranibizumab of a subfoveal choroidal neovascularisation (CNV) associated with pattern dystrophy in 1 patient Patients and methods: 4 affected and 3 unaffected patients (3 female 4 male, age range: 19 - 80 years) were assessed with a complete ophthalmologic examination. AF images were taken using Heidelberg Retina Angiograph and the digital color photos, fluorescein angiogragraphy (FFA) using the same TOPCON 501 camera. Electroretinogram (full-field and multifocal) was performed in 1 affected patient. One 48 years old patient developed a subfoveal CNV, which was treated with 2 injections of ranibizumab, at 3 months interval. Blood sample was taken for molecular analysis (screening of the gene RDS). Results: Two patients had a typical fundoscopic appearance of pattern dystrophy with butterfly shaped deposit at the fovea and some peripheral flecks, as shown with AF imaging.. Two others affected patients had a more unusual appearance with some macular atrophy in one or both eyes, surrounded by flecks. The visual acuity ranged from 1.0 to 0.1 according to Snellen EDTRS chart. The patient with subfoveal CNV presented a drop of vision form 1.0 to 0.6 within 10 days prior to the diagnosis and also reported some metamorphopsia. FFA and optical computerized tomography (OCT) confirmed a classic CNV. After the 1st injection her vision improved to 1.0 but persistent metamorphopsia and fluid on OCT motivated a second injection. One month after the second injection the OCT was flat and the patient had no symptoms. The results of RDS screening will be presented at the meeting. Conclusion: We present a family with pattern dystrophy, with some members having an unusual fundus appearance, which was mistaken for an early onset dry AMD. The AF imaging is a useful tool in diagnosing this condition. A CNV associated with pattern dystrophy a rare. This is the first report of a successful treatment of the CNV with anti-VEGF intravitreal injections.
Resumo:
Levetiracetam (LEV) has been considered to undergo no significant change in bioavailability during pregnancy; however, it was recently demonstrated to display modifications leading to a drop in its serum level. We describe a patient who displayed impending status epilepticus following a fall in her LEV level during the first trimester. The oral LEV dosage was increased, and phenytoin and benzodiazepines were transiently prescribed. She experienced severe anxiety and an unbearable fear over the deleterious consequences for her baby despite repeated, reassuring explanations. Her anxiety was so strong that she aborted electively shortly after leaving the hospital. This observation emphasizes the need for LEV level monitoring during pregnancy to prevent unexpected seizure relapses. The rapid increase in levetiracetam dosage in parallel with the loss of seizure control is suspected of facilitating the induction of significant psychiatric changes.
Resumo:
Astrocytes play a central role in the brain by regulating glutamate and extracellular potassium concentrations ([K+]0), both released by neurons into the extracellular space during neuronal activity. Glutamate uptake is driven by the inwardly directed sodium gradient across the astrocyte membrane and involves the influx of three sodium ions and one proton and the efflux of one K+ ion per glutamate molecule. The glutamate transport induced rise in intracellular sodium stimulates the Na+/K+-ATPase which leads to significant energetic costs in astrocytes. To evaluate how these two fundamental functions of astrocytes, namely glutamate transport and K+ buffering, which are directly associated with neuronal activity, coexist and if they influence each other, in this thesis work we examined different cellular parameters of astrocytes. We therefore investigated the impact of altered [K+]0 on glutamate transporter activity. To assess this question we measured intracellular sodium fluctuations in mouse primary cultured astrocytes using dynamic fluorescence imaging. We found that glutamate uptake was tightly modulated both in amplitude and kinetics by [K+]0. Elevated [K+]0 strongly decreased glutamate transporter activity, with significant consequences on the cells energy metabolism. To ultimately evaluate potential effects of [K+]0 and glutamate on the astrocyte mitochondrial energy production we extended these studies by investigating their impact on the cytosolic and mitochondrial pH. We found that both [K+],, and glutamate strongly influenced cytosolic and mitochondrial pH, but in opposite directions. The effect of a simultaneous application of K+ and glutamate, however, did not fit with the arithmetical sum of each individual effects, suggesting that an additional non¬linear process is involved. We also investigated the impact of [K+]0 and glutamate transport, respectively, on intracellular potassium concentrations ([K+]0 in cultured astrocytes by characterizing and applying a newly developed Insensitive fluorescent dye. We observed that [K+]i followed [K+]0 changes in a nearly proportional way and that glutamate superfusion caused a reversible, glutamate-concentration dependent drop of [K+],, Our study shows the powerful influence of [K+]u on glutamate capture. These findings have strong implications for our understanding of the tightly regulated interplay between astrocytes and neurons in situations where [K+]0 undergoes large activity-dependent fluctuations. However, depending on the extent of K+ versus glutamate extracellular rise, energy metabolism in astrocytes will be differently regulated. Moreover, the novel insights obtained during this thesis work help understanding some of the underlying processes that prevail in certain pathologies of central nervous system, such as epilepsy and stroke. These results will possibly provide a basis for the development of novel therapeutic strategies. -- Les astrocytes jouent un rôle central dans le cerveau en régulant les concentrations de potassium (K+) et de glutamate, qui sont relâchés par les neurones dans l'espace extracellulaire lorsque ceux- ci sont actifs. La capture par les astrocytes du glutamate est un processus secondairement actif qui implique l'influx d'ions sodium (Na+) et d'un proton, ainsi que l'efflux d'ions K+, ce processus entraîne un coût métabolique important. Nous avons évalué comment ces fonctions fondamentales des astrocytes, la régulation du glutamate et du K+ extracellulaire, qui sont directement associés à l'activité neuronale, coexistent et si elles interagissent, en examinant différents paramètres cellulaires. Dans ce projet de thèse nous avons évalué l'impact des modifications de la concentration de potassium extracellulaire ([K+],,) sur le transport du glutamate. Nous avons mesuré le transport du glutamate par le biais des fluctuations internes de Na+ grâce à un colorant fluorescent en utilisant de l'imagerie à fluorescence dynamique sur des cultures primaires d'astrocytes. Nous avons trouvé que la capture du glutamate était étroitement régulée par [K+]0 aussi bien dans son amplitude que dans sa cinétique. Par la suite, nous avons porté notre attention sur l'impact de [K+]0 et du glutamate sur le pH cytosolique et mitochondrial de l'astrocyte dans le but, in fine, d'évaluer les effets potentiels sur la production d'énergie par la mitochondrie. Nous avons trouvé qu'autant le K+ que le glutamate, de manière individuelle, influençaient fortement le pH, cependant dans des directions opposées. Leurs effets individuels, ne peuvent toutefois pas être additionnés ce qui suggère qu'un processus additionnel non-linéaire est impliqué. En appliquant une nouvelle approche pour suivre et quantifier la concentration intracellulaire de potassium ([K+]0 par imagerie à fluorescence, nous avons observé que [K+]i suivait les changements de [K+]0 de manière quasiment proportionnelle et que la superfusion de glutamate induisait un décroissement rapide et réversible de [K+]i, qui dépend de la concentration de glutamate. Notre étude démontre l'influence de [K+]0 sur la capture du glutamate. Ces résultats permettent d'améliorer notre compréhension de l'interaction entre astrocytes et neurones dans des situations où [K+]0 fluctue en fonction de l'activité neuronale. Cependant, en fonction de l'importance de l'augmentation extracellulaire du K+ versus le glutamate, le métabolisme énergétique des astrocytes va être régulé de manière différente. De plus, les informations nouvelles que nous avons obtenues durant ce travail de thèse nous aident à comprendre quelques- uns des processus sous-jacents qui prévalent dans certaines pathologies du système nerveux central, comme par exemple l'épilepsie ou l'accident vasculaire cérébral. Ces informations pourront être importantes à intégrer dans la cadre du développement de nouvelles stratégies thérapeutiques.
Resumo:
Purpose: Retinal stem cells (RSCs) can be isolated from radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have great capacity to renew and generate neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, our published results showed poor integration and survival rate after cell grafting into the retina. The uncontrollable environment of retina seems to be the problem. To bypass this, we are trying to generate hemi-retinal tissue in vitro that can be used for transplantation. Methods: Expanded RSCs were seeded in a mixture of poly-ethylene-glycol (PEG)-polymer-based hydrogels crosslinked by peptides that also serve as substrates for matrix metalloproteinases. Different doses of crosslinker peptides were tested. Several growth factors were studied to stimulate cell proliferation and differentiation. Results: Cells were trapped in hydrogels and cultured in the presence of FGF2 and EGF. Spherical cell clusters indicating proliferation appeared within several days, but there was no cell migration within the gel. We then added cell adhesion molecules integrin ligand RGDSP, or laminin, or a combination of both, into the gel. Cells grown with laminin showed the best proliferation. Cells grown with RGDSP proliferated a few times and then started to spread out. Cells grown with the combination of RGDSP and laminin showed better proliferation than with RGDSP alone and larger spread-outs than with laminin alone. After stimulations with first FGF2 and EGF, and then only FGF2, some cells showed neuronal morphology after 2 weeks. The neuronal population was assessed by the presence of neuronal marker b-tubulin-III. Glial cells were also present. Further characterizations are undergoing. Conclusions: RSC can grow and migrate in 3D hydrogel with the addition of FGF2, EGF, RGDSP and laminin. Further developments are necessary to form a homogenous tissue containing retinal cells.
Resumo:
PURPOSE: We report on the in vivo testing of a novel noninvasively adjustable glaucoma drainage device (AGDD), which features an adjustable outflow resistance, and assess the safety and efficiency of this implant. METHODS: Under general anesthesia, the AGDD was implanted on seven white New Zealand rabbits for a duration of 4 months under a scleral flap in a way analogous to the Ex-PRESS device and set in an operationally closed position. The IOP was measured on a regular basis on the operated and control eyes using a rebound tonometer. Once a month the AGDD was adjusted noninvasively from its fully closed to its fully open position and the resulting pressure drop was measured. The contralateral eye was not operated and served as control. After euthanization, the eyes were collected for histology evaluation. RESULTS: The mean preoperative IOP was 11.1 ± 2.4 mm Hg. The IOP was significantly lower for the operated eye (6.8 ± 2 mm Hg) compared to the nonoperated eye (13.1 ± 1.6 mm Hg) during the first 8 days after surgery. When opening the AGDD from its fully closed to fully open position, the IOP dropped significantly from 11.2 ± 2.9 to 4.8 ± 0.9 mm Hg (P < 0.05). CONCLUSIONS: Implanting the AGDD is a safe and uncomplicated surgical procedure. The fluidic resistance was noninvasively adjustable during the postoperative period with the AGDD between its fully closed and fully open positions.