182 resultados para DEVELOPING MAMMALIAN RETINA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially provides evidence for the disconnectivity hypothesis of schizophrenia in this high-risk population. In the present study, we quantify the whole brain white matter connections in 22q11DS using deterministic tractography. Diffusion Tensor Imaging was acquired in 30 affected patients and 30 age- and gender-matched healthy participants. The Human Connectome technique was applied to register white matter streamlines with cortical anatomy. The number of fibers (streamlines) was used as a measure of connectivity for comparison between groups at the global, lobar and regional level. All statistics were corrected for age and gender. Results showed a 10% reduction of the total number of fibers in patients compared to controls. After correcting for this global reduction, preserved connectivity was found within the right frontal and right parietal lobes. The relative increase in the number of fibers was located mainly in the right hemisphere. Conversely, an excessive reduction of connectivity was observed within and between limbic structures. Finally, a disproportionate reduction was shown at the level of fibers connecting the left fronto-temporal regions. We could therefore speculate that the observed disruption to fronto-temporal connectivity in individuals at risk of schizophrenia implies that fronto-temporal disconnectivity, frequently implicated in the pathogenesis of schizophrenia, could precede the onset of symptoms and, as such, constitutes a biomarker of the vulnerability to develop psychosis. On the contrary, connectivity alterations in the limbic lobe play a role in a wide range of psychiatric disorders and therefore seem to be less specific in defining schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. RESULTS: Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. CONCLUSIONS: We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare in the Swiss population the results of several scores estimating the risk of developing type 2 diabetes. This was a single-center, cross-sectional study conducted between 2003 and 2006 in Lausanne, Switzerland. Overall, 3,251 women and 2,937 men, aged 35-75 years, were assessed, of which 5,760 (93%) were free from diabetes and included in the current study. The risk of developing type 2 diabetes was assessed using seven different risk scores, including clinical data with or without biological data. Participants were considered to be eligible for primary prevention according to the thresholds provided for each score. The results were then extrapolated to the Swiss population of the same sex and age. The risk of developing type 2 diabetes increased with age in all scores. The prevalence of participants at high risk ranged between 1.6 and 24.9% in men and between 1.1 and 15.7% in women. Extrapolated to the Swiss population of similar age, the overall number of participants at risk, and thus susceptible to intervention, ranged between 46,708 and 636,841. In addition, scores that included the same clinical variables led to a significantly different prevalence of participants at risk (4.2% [95% CI 3.4-5.0] vs. 12.8% [11.5-14.1] in men and 2.9% [2.4-3.6] vs. 6.0% [5.2-6.9] in women). CONCLUSIONS; The prevalence of participants at risk for developing type 2 diabetes varies considerably according to the scoring system used. To adequately prevent type 2 diabetes, risk-scoring systems must be validated for each population considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian genomes contain highly conserved sequences that are not functionally transcribed. These sequences are single copy and comprise approximately 1-2% of the human genome. Evolutionary analysis strongly supports their functional conservation, although their potentially diverse, functional attributes remain unknown. It is likely that genomic variation in conserved non-genic sequences is associated with phenotypic variability and human disorders. So how might their function and contribution to human disorders be examined?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial activation of the heart modifies the mechanics of contraction and relaxation. While only little basic research has been addressed to this question, clinical observations showed that for hypertrophic as well as dilated cardiomyopathies appropriate pacing techniques can be useful. Pacing can influence the activation sequence. The spread out from a single site is slow, and so hypercontractility deminshed. With the use of multiple electrodes, two atrial and/or two ventricular, conduction delays in the atria or ventricles can be eliminated. Synchronisation of the cardiac activation has an anti-arrhythmic and positiv inotropic effect. This may lead to new indications for pacemakers or better to be named cardiac synchronisers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:In the retina, the balance between pro- and anti-angiogenic factors is critical for angiogenesis control but is also involved in cell survival and maintenance. For instance, the anti-angiogenic factor PEDF is neuroprotective for photoreceptors (PRs) in models of retinal degeneration. We previously reported upregulation of VEGF (24h to 48h post lesion) in the light-damage (LD) model. Furthermore, systemic delivery of PEDF, as well as lentiviral gene transfer of an anti-VEGF antibody rescue PRs from cell death. Studies in vitro show that VEGF induces retinal endothelial cells apoptosis via the alteration of the Akt1/p38 MAPK signalling pathway under hypoxic conditions. Thus, in this study, we investigate the effect of high levels of VEGF on retinal pigmented epithelium (RPE) permeability and molecular targets expression after light-induced PR degeneration. Methods:To characterize the action of VEGF in the retina during the course of LD, we exposed adult Balb/c mice to 5'000 lux for 1h, and we collected neural retinas and eye-cups (containing RPE) at different time points after the LD. We analysed protein expression by Elisa and Western blotting. In order to study RPE cell permeability after the LD we stained β-catenin on flat mounted RPE. Results:In the neural retina, preliminary results indicate that high levels of VEGF induce a significant upregulation of VEGF receptor 2, whereas VEGF receptor 1 expression is decreased. Concomitantly with VEGF upregulation, LD increases the Src phosphorylation between 24h to 48h. Furthermore, we observe that β-catenin translocates to the cytoplasm of RPE cells between 24h to 36h after the lesion, indicating an increase on the RPE permeability, which could contribute indirectly to the deleterious effect of VEGF observed during light-induced PR apoptosis. Conclusions:This study further involves VEGF in LD and highlights the prime importance of angiogenic factor balance for PR survival. Our results suggest that PR apoptosis is augmented by RPE cell permeability, which may induce high level of VEGF and could be deleterious. The specific action of RPE permeability on PR survival and the role of Src in the retina are under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malondialdehyde (MDA) is a natural and widespread genotoxin. Given its potentially deleterious effects, it is of interest to establish the identities of the cell types containing this aldehyde. We used in situ chemical trapping with 2-thiobarbituric acid and mass spectrometry with a deuterated standard to characterize MDA pools in the vegetative phase in Arabidopsis thaliana. In leaves, MDA occurred predominantly in the intracellular compartment of mesophyll cells and was enriched in chloroplasts where it was derived primarily from triunsaturated fatty acids (TFAs). High levels of MDA (most of which was unbound) were found within dividing cells in the root tip cell proliferation zone. The bulk of this MDA did not originate from TFAs. We confirmed the localization of MDA in transversal root sections. In addition to MDA in proliferating cells near the root tip we found evidence for the presence of MDA in pericyle cells. Remodeling of non-TFA-derived MDA pools occurred when seedlings were infected with the fungus Botrytis cinerea. Treatment of uninfected seedlings with mediators of plant stress responses (jasmonic acid or salicylic acid) increased seedling MDA levels over 20-fold. In summary, major pools of MDA are associated with cell division foci containing stem cells. The aldehyde is pathogen-inducible in these regions and its levels are increased by cellular mediators that impact defense and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurochemical profile of the cortex develops in a region and time specific manner, which can be distorted by psychiatric and other neurological pathologies. Pre-clinical studies often involve experimental mouse models. In this study, we determined the neurochemical profile of C57BL/6 mice in a longitudinal study design to provide a reference frame for the normal developing mouse cortex. Using in vivo proton NMR spectroscopy at 14 T, we measured the concentrations of 18 metabolites in the anterior and posterior cortex on postnatal days (P) 10, 20, 30, 60 and 90. Cortical development was marked by alterations of highly concentrated metabolites, such as N-acetylaspartate, glutamate, taurine and creatine. Regional specificity was represented by early variations in the concentration of glutamine, aspartate and choline. In adult animals, regional concentration differences were found for N-acetylaspartate, creatine and myo-inositol. In this study, animals were exposed to recurrent isoflurane anaesthesia. Additional experiments showed that the latter was devoid of major effects on behaviour or cortical neurochemical profile. In conclusion, the high sensitivity and reproducibility of the measurements achieved at 14 T allowed us to identify developmental variations of cortical areas within the mouse cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The spatio-temporal pattern of arrhythmias in the embryonic/fetal heart subjected to a transient hypoxic or hypothermic stress remains to be established. METHODS AND RESULTS: Spontaneously beating hearts or isolated atria, ventricles, and conotruncus from 4-day-old chick embryos were subjected in vitro to 30-minute anoxia and 60-minute reoxygenation. Hearts were also submitted to 30-minute hypothermia (0-4 degrees C) and 60-minute rewarming. ECG disturbances and alterations of atrial and ventricular electromechanical delay (EMD) were systematically investigated. Baseline functional parameters were stable during at least 2 hours. Anoxia induced tachycardia, followed by bradycardia, atrial ectopy, first-, second-, and third-degree atrio-ventricular blocks and, finally, transient electromechanical arrest after 6.8 minutes, interquartile ranges (IQR) 3.1-16.2 (n = 8). Reoxygenation triggered also Wenckebach phenomenon and ventricular escape beats. At the onset of reoxygenation QT, PR, and ventricular EMD increased by 68%, 70%, and 250%, respectively, whereas atrial EMD was not altered. No fibrillations, no ventricular ectopic beats, and no electromechanical dissociation were observed. Arrhythmic activity of the isolated atria persisted throughout anoxia and upon reoxygenation, whereas activity of the isolated ventricles abruptly ceased after 5 minutes of anoxia and resumed after 5 minutes of reoxygenation. During hypothermia-rewarming, cardiac activity stopped at 17.9 degrees C, IQR 16.2-20.6 (n = 4) and resumed at the same temperature with no arrhythmias. All preparations fully recovered after 40 minutes of reoxygenation or rewarming. CONCLUSION: In the embryonic heart, arrhythmias mainly originated in the sinoatrial tissue and resembled those observed in the adult heart. Furthermore, oxygen readmission was by far more arrhythmogenic than rewarming and the chronotropic, dromotropic, and inotropic effects were fully reversible.