33 resultados para Corporate Finance and Governance: Government Policy and Regulation
Resumo:
Neuropeptide Y (NPY) is a key modulator of the autonomic nervous system playing pivotal roles in cardiovascular and neuronal functions. In this study, we assessed the cellular localization and gene expression of NPY in rat kidneys. We also examined the relationship between NPY gene expression and renin in two rat models of hypertension (two-kidney, one-clip renal hypertension (2K1C), and deoxycorticosterone-salt-induced hypertension (DOCA-salt)) characterized by a similar blood pressure elevation. In situ hybridization and immunohistochemistry, using anti-NPY or anti-C-flanking peptide of NPY (CPON) antibodies, showed that NPY transcript and protein were colocalized in the tubules of rat kidneys. During experimental hypertension, NPY mRNA was decreased in both kidneys of the 2K1C animals, but not in the kidney of DOCA-salt rats. In 2K1C rats, renal NPY content was also decreased. The difference in NPY gene expression between 2K1C rats (a high renin model of hypertension) and DOCA-salt rats (a low renin model of hypertension) suggests that circulating angiotensin II plays a role in local renal NPY gene expression and that the elevated blood pressure per se is not the primary factor responsible for the control of NPY gene expression in the kidney.
Resumo:
BACKGROUND: The in vivo transfer of naked plasmid DNA into organs such as muscles is commonly used to assess the expression of prophylactic or therapeutic genes in animal disease models. RESULTS: In this study, we devised vectors allowing a tight regulation of transgene expression in mice from such non-viral vectors using a doxycycline-controlled network of activator and repressor proteins. Using these vectors, we demonstrate proper physiological response as consequence of the induced expression of two therapeutically relevant proteins, namely erythropoietin and utrophin. Kinetic studies showed that the induction of transgene expression was only transient, unless epigenetic regulatory elements termed Matrix Attachment Regions, or MAR, were inserted upstream of the regulated promoters. Using episomal plasmid rescue and quantitative PCR assays, we observed that similar amounts of plasmids remained in muscles after electrotransfer with or without MAR elements, but that a significant portion had integrated into the muscle fiber chromosomes. Interestingly, the MAR elements were found to promote plasmid genomic integration but to oppose silencing effects in vivo, thereby mediating long-term expression. CONCLUSIONS: This study thus elucidates some of the determinants of transient or sustained expression from the use of non-viral regulated vectors in vivo.
Resumo:
The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.
Resumo:
Neuropeptide-Y (NPY) is a 36-amino acid peptide known to inhibit glucose-stimulated insulin secretion in various animal models in vitro and in vivo. NPY is thought to be one of the mediators of sympathetic action in the pancreas through nerve endings surrounding the islets, and it has recently been shown to be synthesized within the islets of Langerhans. To elucidate the potential role of NPY in the endocrine pancreas, we studied the expression and regulation of NPY secretion in a rat insulinoma cell line (INS-1). NPY mRNA and peptide are highly expressed and secreted by INS-1 cells. NPY levels were determined by a sensitive and specific two-site amplified enzyme-linked immunosorbent assay. Incubation of INS-1 cells with various glucose concentrations did not modify NPY secretion; however, stimulation of adenylate cyclase by forskolin induced a dose- and time-dependent increase in NPY release in the medium. The glucagon-like peptide-I-(7-36) amide (GLP-1), a known gluco-incretin in humans, induced at low concentration (10(-9) M) a similar expression of NPY mRNA and peptide secretion in INS-1 cells. On the other hand, the inhibition of cAMP accumulation by the alpha 2-adrenergic agonist clonidine decreased NPY secretion. In conclusion, 1) high levels of gene expression and secretion of NPY are found in a rat insulinoma cell line (INS-1). 2) Accumulation of cAMP induced by forskolin or a gluco-incretin (GLP-1) induces a further increase in NPY gene expression and release. 3) NPY secretion is not modulated by low or high glucose concentrations in the medium. 4) Induction of NPY, a known inhibitor of insulin secretion, may represent a novel counterregulatory mechanism of insulin secretion, limiting the stimulatory effect of GLP-1 on insulin secretion.
Resumo:
Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.
Resumo:
The aim of a large number of studies on G protein-coupled receptors was centered on understanding the structural basis of their main functional properties. Here, we will briefly review the results obtained on the alpha1-adrenergic receptor subtypes belonging to the rhodopsin-like family of receptors. These findings contribute, on the one hand, to further understand the molecular basis of adrenergic transmission and, on the other, to provide some generalities on the structure-functional relationship of G protein-coupled receptors.
Resumo:
PPARs are members of the nuclear hormone receptor superfamily and are primarily involved in lipid metabolism. The expression patterns of all 3 PPAR isotypes in 22 adult rat organs were analyzed by a quantitative ribonuclease protection assay. The data obtained allowed comparison of the expression of each isotype to the others and provided new insight into the less studied PPAR beta (NR1C2) expression and function. This isotype shows a ubiquitous expression pattern and is the most abundant of the three PPARs in all analyzed tissues except adipose tissue. Its expression is especially high in the digestive tract, in addition to kidney, heart, diaphragm, and esophagus. After an overnight fast, PPAR beta mRNA levels are dramatically down-regulated in liver and kidney by up to 80% and are rapidly restored to control levels upon refeeding. This tight nutritional regulation is independent of the circulating glucocorticoid levels and the presence of PPAR alpha, whose activity is markedly up-regulated in the liver and small intestine during fasting. Finally, PPAR gamma 2 mRNA levels are decreased by 50% during fasting in both white and brown adipose tissue. In conclusion, fasting can strongly influence PPAR expression, but in only a few selected tissues.
Resumo:
Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.
Resumo:
The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage.
Resumo:
Financial markets play an important role in an economy performing various functions like mobilizing and pooling savings, producing information about investment opportunities, screening and monitoring investments, implementation of corporate governance, diversification and management of risk. These functions influence saving rates, investment decisions, technological innovation and, therefore, have important implications for welfare. In my PhD dissertation I examine the interplay of financial and product markets by looking at different channels through which financial markets may influence an economy.My dissertation consists of four chapters. The first chapter is a co-authored work with Martin Strieborny, a PhD student from the University of Lausanne. The second chapter is a co-authored work with Melise Jaud, a PhD student from the Paris School of Economics. The third chapter is co-authored with both Melise Jaud and Martin Strieborny. The last chapter of my PhD dissertation is a single author paper.Chapter 1 of my PhD thesis analyzes the effect of financial development on growth of contract intensive industries. These industries intensively use intermediate inputs that neither can be sold on organized exchange, nor are reference-priced (Levchenko, 2007; Nunn, 2007). A typical example of a contract intensive industry would be an industry where an upstream supplier has to make investments in order to customize a product for needs of a downstream buyer. After the investment is made and the product is adjusted, the buyer may refuse to meet a commitment and trigger ex post renegotiation. Since the product is customized to the buyer's needs, the supplier cannot sell the product to a different buyer at the original price. This is referred in the literature as the holdup problem. As a consequence, the individually rational suppliers will underinvest into relationship-specific assets, hurting the downstream firms with negative consequences for aggregate growth. The standard way to mitigate the hold up problem is to write a binding contract and to rely on the legal enforcement by the state. However, even the most effective contract enforcement might fail to protect the supplier in tough times when the buyer lacks a reliable source of external financing. This suggests the potential role of financial intermediaries, banks in particular, in mitigating the incomplete contract problem. First, financial products like letters of credit and letters of guarantee can substantially decrease a risk and transaction costs of parties. Second, a bank loan can serve as a signal about a buyer's true financial situation, an upstream firm will be more willing undertake relationship-specific investment knowing that the business partner is creditworthy and will abstain from myopic behavior (Fama, 1985; von Thadden, 1995). Therefore, a well-developed financial (especially banking) system should disproportionately benefit contract intensive industries.The empirical test confirms this hypothesis. Indeed, contract intensive industries seem to grow faster in countries with a well developed financial system. Furthermore, this effect comes from a more developed banking sector rather than from a deeper stock market. These results are reaffirmed examining the effect of US bank deregulation on the growth of contract intensive industries in different states. Beyond an overall pro-growth effect, the bank deregulation seems to disproportionately benefit the industries requiring relationship-specific investments from their suppliers.Chapter 2 of my PhD focuses on the role of the financial sector in promoting exports of developing countries. In particular, it investigates how credit constraints affect the ability of firms operating in agri-food sectors of developing countries to keep exporting to foreign markets.Trade in high-value agri-food products from developing countries has expanded enormously over the last two decades offering opportunities for development. However, trade in agri-food is governed by a growing array of standards. Sanitary and Phytosanitary standards (SPS) and technical regulations impose additional sunk, fixed and operating costs along the firms' export life. Such costs may be detrimental to firms' survival, "pricing out" producers that cannot comply. The existence of these costs suggests a potential role of credit constraints in shaping the duration of trade relationships on foreign markets. A well-developed financial system provides the funds to exporters necessary to adjust production processes in order to meet quality and quantity requirements in foreign markets and to maintain long-standing trade relationships. The products with higher needs for financing should benefit the most from a well functioning financial system. This differential effect calls for a difference-in-difference approach initially proposed by Rajan and Zingales (1998). As a proxy for demand for financing of agri-food products, the sanitary risk index developed by Jaud et al. (2009) is used. The empirical literature on standards and norms show high costs of compliance, both variable and fixed, for high-value food products (Garcia-Martinez and Poole, 2004; Maskus et al., 2005). The sanitary risk index reflects the propensity of products to fail health and safety controls on the European Union (EU) market. Given the high costs of compliance, the sanitary risk index captures the demand for external financing to comply with such regulations.The prediction is empirically tested examining the export survival of different agri-food products from firms operating in Ghana, Mali, Malawi, Senegal and Tanzania. The results suggest that agri-food products that require more financing to keep up with food safety regulation of the destination market, indeed sustain longer in foreign market, when they are exported from countries with better developed financial markets.Chapter 3 analyzes the link between financial markets and efficiency of resource allocation in an economy. Producing and exporting products inconsistent with a country's factor endowments constitutes a serious misallocation of funds, which undermines competitiveness of the economy and inhibits its long term growth. In this chapter, inefficient exporting patterns are analyzed through the lens of the agency theories from the corporate finance literature. Managers may pursue projects with negative net present values because their perquisites or even their job might depend on them. Exporting activities are particularly prone to this problem. Business related to foreign markets involves both high levels of additional spending and strong incentives for managers to overinvest. Rational managers might have incentives to push for exports that use country's scarce factors which is suboptimal from a social point of view. Export subsidies might further skew the incentives towards inefficient exporting. Management can divert the export subsidies into investments promoting inefficient exporting.Corporate finance literature stresses the disciplining role of outside debt in counteracting the internal pressures to divert such "free cash flow" into unprofitable investments. Managers can lose both their reputation and the control of "their" firm if the unpaid external debt triggers a bankruptcy procedure. The threat of possible failure to satisfy debt service payments pushes the managers toward an efficient use of available resources (Jensen, 1986; Stulz, 1990; Hart and Moore, 1995). The main sources of debt financing in the most countries are banks. The disciplining role of banks might be especially important in the countries suffering from insufficient judicial quality. Banks, in pursuing their rights, rely on comparatively simple legal interventions that can be implemented even by mediocre courts. In addition to their disciplining role, banks can promote efficient exporting patterns in a more direct way by relaxing credit constraints of producers, through screening, identifying and investing in the most profitable investment projects. Therefore, a well-developed domestic financial system, and particular banking system, would help to push a country's exports towards products congruent with its comparative advantage.This prediction is tested looking at the survival of different product categories exported to US market. Products are identified according to the Euclidian distance between their revealed factor intensity and the country's factor endowments. The results suggest that products suffering from a comparative disadvantage (labour-intensive products from capital-abundant countries) survive less on the competitive US market. This pattern is stronger if the exporting country has a well-developed banking system. Thus, a strong banking sector promotes exports consistent with a country comparative advantage.Chapter 4 of my PhD thesis further examines the role of financial markets in fostering efficient resource allocation in an economy. In particular, the allocative efficiency hypothesis is investigated in the context of equity market liberalization.Many empirical studies document a positive and significant effect of financial liberalization on growth (Levchenko et al. 2009; Quinn and Toyoda 2009; Bekaert et al., 2005). However, the decrease in the cost of capital and the associated growth in investment appears rather modest in comparison to the large GDP growth effect (Bekaert and Harvey, 2005; Henry, 2000, 2003). Therefore, financial liberalization may have a positive impact on growth through its effect on the allocation of funds across firms and sectors.Free access to international capital markets allows the largest and most profitable domestic firms to borrow funds in foreign markets (Rajan and Zingales, 2003). As domestic banks loose some of their best clients, they reoptimize their lending practices seeking new clients among small and younger industrial firms. These firms are likely to be more risky than large and established companies. Screening of customers becomes prevalent as the return to screening rises. Banks, ceteris paribus, tend to focus on firms operating in comparative-advantage sectors because they are better risks. Firms in comparative-disadvantage sectors finding it harder to finance their entry into or survival in export markets either exit or refrain from entering export markets. On aggregate, one should therefore expect to see less entry, more exit, and shorter survival on export markets in those sectors after financial liberalization.The paper investigates the effect of financial liberalization on a country's export pattern by comparing the dynamics of entry and exit of different products in a country export portfolio before and after financial liberalization.The results suggest that products that lie far from the country's comparative advantage set tend to disappear relatively faster from the country's export portfolio following the liberalization of financial markets. In other words, financial liberalization tends to rebalance the composition of a country's export portfolio towards the products that intensively use the economy's abundant factors.
Resumo:
Emotional and neuroendocrine regulation have been shown to be associated. However, results are inconsistent. This paper explores the functioning and relationships between these two systems in 54 healthy preterm and 25 full-term born infants at six months of age. Results showed significant differences between very preterm and full-term children in emotional intensity and regulation, as well as in neuroendocrine regulation. No evidence of an association between neuroendocrine and emotional regulations was found. Results suggest a possible delay in the maturation of the neuroendocrine system as well as in emotional regulation in very preterm infants.
Resumo:
Abstract The complexity of the current business world is making corporate disclosure more and more important for information users. These users, including investors, financial analysts, and government authorities rely on the disclosed information to make their investment decisions, analyze and recommend shares, and to draft regulation policies. Moreover, the globalization of capital markets has raised difficulties for information users in understanding the differences incorporate disclosure across countries and across firms. Using a sample of 797 firms from 34 countries, this thesis advances the literature on disclosure by illustrating comprehensively the disclosure determinants originating at firm systems and national systems based on the multilevel latent variable approach. Under this approach, the overall variation associated with the firm-specific variables is decomposed into two parts, the within-country and the between-country part. Accordingly, the model estimates the latent association between corporate disclosure and information demand at two levels, the within-country and the between-country level. The results indicate that the variables originating from corporate systems are hierarchically correlated with those from the country environment. The information demand factor indicated by the number of exchanges listed and the number of analyst recommendations can significantly explain the variation of corporate disclosure for both "within" and "between" countries. The exogenous influences of firm fundamentals-firm size and performance-are exerted indirectly through the information demand factor. Specifically, if the between-country variation in firm variables is taken into account, only the variables of legal systems and economic growth keep significance in explaining the disclosure differences across countries. These findings strongly support the hypothesis that disclosure is a response to both corporate systems and national systems, but the influence of the latter on disclosure reflected significantly through that of the former. In addition, the results based on ADR (American Depositary Receipt) firms suggest that the globalization of capital markets is harmonizing the disclosure behavior of cross-boundary listed firms, but it cannot entirely eliminate the national features in disclosure and other firm-specific characteristics.