31 resultados para Corécepteur CCR5


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose/Objective: Phenotypic and functional T cell properties are usually analyzed at the level of defined cell populations. However, large differences between individual T cells may have important functional consequences. To answer this issue, we performed highly sensitive single-cell gene expression profiling, which allows the direct ex vivo characterization of individual virus- and tumor-specific T cells from healthy donors and melanoma patients. Materials and methods: HLA-A*0201-positive patients with stage III/ IV metastatic melanoma were included in a phase I clinical trial (LUD- 00-018). Patients received monthly low-dose of the Melan-AMART- 1 26_35 unmodified natural (EAAGIGILTV) or the analog A27L (ELAGIGILTV) peptides, mixed CPG and IFA. Individual effector memory CD28+ (EM28+) and EM28- tetramer-specific CD8pos T cells were sorted by flow cytometer. Following direct cell lysis and reverse transcription, the resulting cDNA was precipitated and globally amplified. Semi-quantitative PCR was used for gene expression and TCR BV repertoire analyses. Results: We have previously shown that vaccination with the natural Melan-A peptide induced T cells with superior effector functions as compared to the analog peptide optimized for enhanced HLA binding. Here we found that natural peptide vaccination induced EM28+ T cells with frequent co-expression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3 and CCR5) and effector-related genes (IFNG, KLRD1, PRF1 and GZMB), comparable to protective EBV- and CMV-specific T cells. In contrast, memory/homing- and effectorassociated genes were less frequently co-expressed after vaccination with the analog peptide. Conclusions: These findings reveal a previously unknown level of gene expression diversity among vaccine- and virus-specific T cells with the simultaneous co-expression of multiple memory/homing- and effector- related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor- and virus-specific T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host genome studies are increasingly available for the study of infectious disease susceptibility. Current technologies include large-scale genotyping, genome-wide screens such as transcriptome and silencing (silencing RNA) studies, and increasingly, the possibility to sequence complete genomes. These approaches are of interest for the study of individuals who remain uninfected despite documented exposure to human immunodeficiency virus type 1. The main limitation remains the ascertainment of exposure and establishing large cohorts of informative individuals. The pattern of enrichment for CCR5 Δ32 homozygosis should serve as the standard for assessing the extent to which a given cohort (of white subjects) includes a large proportion of exposed uninfected individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ∼fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.Mucosal Immunology advance online publication 12 September 2012; doi:10.1038/mi.2012.83.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human colon carcinoma Caco-2 cell monolayers undergo conversion into cells that share morphological and functional features of M cells when allowed to interact with B lymphocytes. A lymphotropic (X4) HIV-1 strain crosses M cell monolayers and infects underlying CD4(+) target cells. Transport requires both lactosyl cerebroside and CXCR4 receptors, which are expressed on the apical surface of Caco-2 and M cells. Antibodies specific for each receptor block transport. In contrast, a monotropic (R5) HIV-1 strain is unable to cross M cell monolayers and infect underlying monocytes, despite efficient transport of latex beads. Caco-2 and M cells do not express CCR5, but transfection of these cells with CCR5 cDNA restores transport of R5 virus, which demonstrates that HIV-1 transport across M cells is receptor-mediated. The follicle-associated epithelium covering human gut lymphoid follicles expresses CCR5, but not CXCR4, and lactosyl cerebroside, suggesting that HIV-1 infection may occur through M cells and enterocytes at these sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isolated primary human cells from different donors vary in their permissiveness-the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4(+) CD45RO(+) CD57(-) T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared it with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/ NYVAC-C vaccine regimen. Smallpox-specific CD4 T-cell responses were present in the blood of 52% of the subjects studied, while smallpox-specific CD8 T cells were rarely detected (12%). With one exception, smallpox-specific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed α4β7 integrins and the HIV coreceptor CCR5. These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and the depletion of CD4 T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of host genetic variation on determining the differential outcomes after HIV infection has been studied by two approaches: targeting of candidate genes and genome-wide association studies (GWASs). The overlap in genetic variants that has been identified by these two means has essentially been restricted to variants near to the human leukocyte antigen (HLA) class I genes, although variation in the CCR5 locus, which was first shown to have an effect on HIV outcomes using the candidate gene approach, does reach significance genome-wide when very large samples sizes (i.e. thousands) are used in GWAS. Overall, many of the variants identified by the candidate gene approach are likely to be spurious, as no additional variants apart from a novel variant near the HLA-C gene have been consistently identified by GWAS. Variants with low frequency and/or low impact on HIV outcomes are likely to exist in the genome and there could be many of them, but these are not identifiable, given current GWAS sample sizes. Several loci centrally involved in the immune response, including the immunoglobulin genes, T-cell receptor loci, or leukocyte receptor complex, are either poorly covered on the GWAS chips or difficult to interpret due to their repetitive nature and/or the presence of insertion/deletion polymorphisms in the region. These loci warrant further interrogation, but genetic characterization of these regions across a range of individuals will first be required. Finally, synergistic interactions between loci may affect outcome after infection, as suggested by associations of specific, functionally relevant HLA and killer cell immunoglobulin-like receptor variants with HIV disease outcomes, and these require further consideration as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Various patterns of HIV-1 disease progression are described in clinical practice and in research. There is a need to assess the specificity of commonly used definitions of long term non-progressor (LTNP) elite controllers (LTNP-EC), viremic controllers (LTNP-VC), and viremic non controllers (LTNP-NC), as well as of chronic progressors (P) and rapid progressors (RP). Methodology and Principal Findings: We re-evaluated the HIV-1 clinical definitions, summarized in Table 1, using the information provided by a selected number of host genetic markers and viral factors. There is a continuous decrease of protective factors and an accumulation of risk factors from LTNP-EC to RP. Statistical differences in frequency of protective HLA-B alleles (p-0.01), HLA-C rs9264942 (p-0.06), and protective CCR5/CCR2 haplotypes (p-0.02) across groups, and the presence of viruses with an ancestral genotype in the "viral dating" (i.e., nucleotide sequences with low viral divergence from the most recent common ancestor) support the differences among principal clinical groups of HIV-1 infected individuals. Conclusions: A combination of host genetic and viral factors supports current clinical definitions that discriminate among patterns of HIV-1 progression. The study also emphasizes the need to apply a standardized and accepted set of clinical definitions for the purpose of disease stratification and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary The mechanisms regulating the protective immune T-cell responses generated against the persistent Epstein-Barr virus (EBV) and Cytomegaloviru_s (CNIV) remain poorly understood. We analyzed the dynamics of cellular differentiation and T-cell receptor (TCR) clonotype selection of EBV- and CMV-specific T-cells in healthy adults and melanoma patients. While these responses could be subdivided into four T lymphocyte populations, théir proportions varied between EBV and CMV specific responses. Phenotypic and TCR clonotypic analyses supported a linear model of differentiation from the early-differentiated (EM/CD28pos) subset to the late-differentiatdc (EMRA/CD28neg) subset. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28neg subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, as some clonotypes were selected with differentiation, while others were not. Latedifferentiated CMV-specific clonotypes were mostly characterized by TCRs with lower dependency on CD8 co-receptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of four years. This work was extended to the study of EBV-specific CD8 T-cell responses in melanoma patients undergoing transient lymphodepletion, followed by adoptive cell transfer (ACT) and immune reconstitution for thè treatment of their tumors. Following treatment regimen, we first observed an increase in the proportion of virus-specific T-cells in 3 out of 5 patients, accompanied by a more differentiated phenotype (EMRA/CD28neg), compared to specific cells of healthy individuals. Yet, similarly to healthy donors, clonotype selection and composition of virus-specific T-cells varied along the pathway of cellular differentiation, with some clonotypes being selected with differentiation, while others were not. Intriguingly, no novel clonotypes emerged following transient immuno-suppression and homeostatic proliferation, finding which was subsequently explained by the absence of EBV reactivation. The distribution of each clonotype within early- and late-differentiated T-cell subsets in 4 out 5 patients was highly stable over time, with those clonotypes initially found before the start of treatment that were again present at specific differentiation stages after transient lymphodepletion and ACT. These findings uncover novel features of the highly sophisticated control of steady state protective T-cell immune responses against persistent herpesviruses in healthy adults. Furthermore they reveal the striking stability of these responses in terms of clonotype selection and composition with T-cell differentiation even in situations where the immune system has been. challenged. Résumé : Les mécanismes qui régulent les réponses immunitaires de type protectrices, générées contre les virus chroniquement persistants tels que l'Epstein-Barr (EBV) ou le Cytomegalo (CMV) restent largement inconnus. Nous avons analysé la différenciation des lymphocytes T spécifiques pour ces virus, ainsi que la composition des clonotypes T (par leur récepteur T) chez les donneurs sains. Les réponses immunes peuvent être classifiées en quatre souspopulations majeures de lymphocytes T, cependant, leur proportion varie entre les réponses spécifiques contre EBV ou CMV. Ces analyses soutiennent le modèle linéaire de différenciation, à partir de la population non différenciée (EM/CD28pos) vers la population plus différenciée (ENIIZA/CD28neg). De plus, nos données sur la composition clonale de ces cellules T spécifiques ont révélé des répertoires TCR restreints, pour la réponse anti-CMV, et relativement diversifiés contre EBV. Tous les clonotypes spécifiques de ces virus identifiés dans la sous-population différenciée EMRA/CD28neg, ont également été retrouvés dans la population de cellules "mémoires". Toutefois, de fortes différences ont été observées dans les schémas de domination de ces sous-populations, en effet, certains clonotypes étaient sélectionnés avec la différenciation, alors que d'autres ne l'étaient pas. Nous avons également démontré que ces clonotypes différenciés et spécifiques pour le CMV sont caractérisés par des TCRs à faible dépendance en regard de la coopération du corécepteur CD8. Néanmoins, tous les clonotypes affichent une avidité fonctionnelle similaire, suggérant un rôle compensatoire du CD8, dans le cas des clonotypes avec une faible avidité du TCR En définitive, la composition et la sélection des clonotypes spécifiques pour chaque virus et pour chaque sous-population suit un schéma de différenciation hautement conservé au cours du temps, avec la présence de ces mêmes clonotypes au même stade de différenciation sur une période de quatre ans. Ce travail a été étendu à l'étude des réponses T CD8+ spécifiques pour le virus EBV chez les patients atteints de mélanome et recevant dans le cadre du traitement de leurs tumeurs une lymphodéplétion transitoire, suivie d'un transfert adoptif de cellules et d'une reconstitution immunitaire. Au cours de cette thérapie, nous avons en premier lieu observé pour 3 des 5 patients une augmentation de la proportion de cellules T spécifiques pour le virus, accompagné d'un phénotype plus différencié (EMRA/CD28neg), et ceci comparativement à des cellules spécifiques d'individus sains. Pourtant, comme nous l'avons observé chez les donneurs sains, la sélection et la composition des clonotypes T spécifiques varient tout au long de la différenciation cellulaire, avec certains clonotypes sélectionnés et d'autres qui ne le sont pas. Étonnamment, aucun nouveau clonotype n'a émergé après l'immuno-suppression transitoire et la prolifération homéostatique. Cette observation trouve son explication par une absence de réactivation du virus EBV chez ces patients, et ce malgré leur traitement. De plus, la distribution de chaque clonotype parmi ces sous-populations non-différenciées et différenciées reste stable au cours du traitement. Ainsi, les mêmes clonotypes initialement identifiés avant le début du traitement sont présents aux mêmes stades de différenciation après la lymphodéplétion et la prolifération homéostatique. Ces résultats ont permis d'identifier de nouveaux mécanismes impliqués dans la régulation hautement «sophistiquée » des réponses immunitaires T contre les virus persistants EBV et CMV chez les donneurs sains. En particulier, ils révèlent la grande stabilité de ces réponses en termes de sélection et de composition des clonotypes avec la différenciation cellulaire, et ce dans les situations chroniques, ainsi que dans les situations dans lesquelles le système immunitaire a été profondément perturbé.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genotype-based algorithms are valuable tools for the identification of patients eligible for CCR5 inhibitors administration in clinical practice. Among the available methods, geno2pheno[coreceptor] (G2P) is the most used online tool for tropism prediction. This study was conceived to assess if the combination of G2P prediction with V3 peptide net charge (NC) value could improve the accuracy of tropism prediction. A total of 172 V3 bulk sequences from 143 patients were analyzed by G2P and NC values. A phenotypic assay was performed by cloning the complete env gene and tropism determination was assessed on U87_CCR5(+)/CXCR4(+) cells. Sequences were stratified according to the agreement between NC values and G2P results. Of sequences predicted as X4 by G2P, 61% showed NC values higher than 5; similarly, 76% of sequences predicted as R5 by G2P had NC values below 4. Sequences with NC values between 4 and 5 were associated with different G2P predictions: 65% of samples were predicted as R5-tropic and 35% of sequences as X4-tropic. Sequences identified as X4 by NC value had at least one positive residue at positions known to be involved in tropism prediction and positive residues in position 32. These data supported the hypothesis that NC values between 4 and 5 could be associated with the presence of dual/mixed-tropic (DM) variants. The phenotypic assay performed on a subset of sequences confirmed the tropism prediction for concordant sequences and showed that NC values between 4 and 5 are associated with DM tropism. These results suggest that the combination of G2P and NC could increase the accuracy of tropism prediction. A more reliable identification of X4 variants would be useful for better selecting candidates for Maraviroc (MVC) administration, but also as a predictive marker in coreceptor switching, strongly associated with the phase of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.