43 resultados para Convolutional Neural Networks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary : Division of labour is one of the most fascinating aspects of social insects. The efficient allocation of individuals to a multitude of different tasks requires a dynamic adjustment in response to the demands of a changing environment. A considerable number of theoretical models have focussed on identifying the mechanisms allowing colonies to perform efficient task allocation. The large majority of these models are built on the observation that individuals in a colony vary in their propensity (response threshold) to perform different tasks. Since individuals with a low threshold for a given task stimulus are more likely to perform that task than individuals with a high threshold, infra-colony variation in individual thresholds results in colony division of labour. These theoretical models suggest that variation in individual thresholds is affected by the within-colony genetic diversity. However, the models have not considered the genetic architecture underlying the individual response thresholds. This is important because a better understanding of division of labour requires determining how genotypic variation relates to differences in infra-colony response threshold distributions. In this thesis, we investigated the combined influence on task allocation efficiency of both, the within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes underlying the response thresholds. We used an agent-based simulator to model a situation where workers in a colony had to perform either a regulatory task (where the amount of a given food item in the colony had to be maintained within predefined bounds) or a foraging task (where the quantity of a second type of food item collected had to be the highest possible). The performance of colonies was a function of workers being able to perform both tasks efficiently. To study the effect of within-colony genetic diversity, we compared the performance of colonies with queens mated with varying number of males. On the other hand, the influence of genetic architecture was investigated by varying the number of loci underlying the response threshold of the foraging and regulatory tasks. Artificial evolution was used to evolve the allelic values underlying the tasks thresholds. The results revealed that multiple matings always translated into higher colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or few genes for the foraging task's threshold. By contrast, higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes determining the threshold for the regulatory task only had a minor but incremental effect on colony performance. Overall, our numerical experiments indicate the importance of considering the effects of queen mating frequency, genetic architecture underlying task thresholds and the type of task performed when investigating the factors regulating the efficiency of division of labour in social insects. In this thesis we also investigate the task allocation efficiency of response threshold models and compare them with neural networks. While response threshold models are widely used amongst theoretical biologists interested in division of labour in social insects, our simulation reveals that they perform poorly compared to a neural network model. A major shortcoming of response thresholds is that they fail at one of the most crucial requirement of division of labour, the ability of individuals in a colony to efficiently switch between tasks under varying environmental conditions. Moreover, the intrinsic properties of the threshold models are that they lead to a large proportion of idle workers. Our results highlight these limitations of the response threshold models and provide an adequate substitute. Altogether, the experiments presented in this thesis provide novel contributions to the understanding of how division of labour in social insects is influenced by queen mating frequency and genetic architecture underlying worker task thresholds. Moreover, the thesis also provides a novel model of the mechanisms underlying worker task allocation that maybe more generally applicable than the widely used response threshold models. Resumé : La répartition du travail est l'un des aspects les plus fascinants des insectes vivant en société. Une allocation efficace de la multitude de différentes tâches entre individus demande un ajustement dynamique afin de répondre aux exigences d'un environnement en constant changement. Un nombre considérable de modèles théoriques se sont attachés à identifier les mécanismes permettant aux colonies d'effectuer une allocation efficace des tâches. La grande majorité des ces modèles sont basés sur le constat que les individus d'une même colonie diffèrent dans leur propension (inclination à répondre) à effectuer différentes tâches. Etant donné que les individus possédant un faible seuil de réponse à un stimulus associé à une tâche donnée sont plus disposés à effectuer cette dernière que les individus possédant un seuil élevé, les différences de seuils parmi les individus vivant au sein d'une même colonie mènent à une certaine répartition du travail. Ces modèles théoriques suggèrent que la variation des seuils des individus est affectée par la diversité génétique propre à la colonie. Cependant, ces modèles ne considèrent pas la structure génétique qui est à la base des seuils de réponse individuels. Ceci est très important car une meilleure compréhension de la répartition du travail requière de déterminer de quelle manière les variations génotypiques sont associées aux différentes distributions de seuils de réponse à l'intérieur d'une même colonie. Dans le cadre de cette thèse, nous étudions l'influence combinée de la variabilité génétique d'une colonie (qui prend son origine dans la variation du nombre d'accouplements des reines) avec le nombre de gènes supportant les seuils de réponse, vis-à-vis de la performance de l'allocation des tâches. Nous avons utilisé un simulateur basé sur des agents pour modéliser une situation où les travailleurs d'une colonie devaient accomplir une tâche de régulation (1a quantité d'une nourriture donnée doit être maintenue à l'intérieur d'un certain intervalle) ou une tâche de recherche de nourriture (la quantité d'une certaine nourriture doit être accumulée autant que possible). Dans ce contexte, 'efficacité des colonies tient en partie des travailleurs qui sont capable d'effectuer les deux tâches de manière efficace. Pour étudier l'effet de la diversité génétique d'une colonie, nous comparons l'efficacité des colonies possédant des reines qui s'accouplent avec un nombre variant de mâles. D'autre part, l'influence de la structure génétique a été étudiée en variant le nombre de loci à la base du seuil de réponse des deux tâches de régulation et de recherche de nourriture. Une évolution artificielle a été réalisée pour évoluer les valeurs alléliques qui sont à l'origine de ces seuils de réponse. Les résultats ont révélé que de nombreux accouplements se traduisaient toujours en une plus grande performance de la colonie, quelque soit le nombre de loci encodant les seuils des tâches de régulation et de recherche de nourriture. Cependant, les effets bénéfiques d'accouplements additionnels ont été particulièrement important lorsque la structure génétique des reines comprenait un ou quelques gènes pour le seuil de réponse pour la tâche de recherche de nourriture. D'autre part, un nombre plus élevé de gènes encodant la tâche de recherche de nourriture a diminué la performance de la colonie avec un effet nuisible d'autant plus fort lorsque les reines s'accouplent avec plusieurs mâles. Finalement, le nombre de gènes déterminant le seuil pour la tâche de régulation eu seulement un effet mineur mais incrémental sur la performance de la colonie. Pour conclure, nos expériences numériques révèlent l'importance de considérer les effets associés à la fréquence d'accouplement des reines, à la structure génétique qui est à l'origine des seuils de réponse pour les tâches ainsi qu'au type de tâche effectué au moment d'étudier les facteurs qui régulent l'efficacité de la répartition du travail chez les insectes vivant en communauté. Dans cette thèse, nous étudions l'efficacité de l'allocation des tâches des modèles prenant en compte des seuils de réponses, et les comparons à des réseaux de neurones. Alors que les modèles basés sur des seuils de réponse sont couramment utilisés parmi les biologistes intéressés par la répartition des tâches chez les insectes vivant en société, notre simulation montre qu'ils se révèlent peu efficace comparé à un modèle faisant usage de réseaux de neurones. Un point faible majeur des seuils de réponse est qu'ils échouent sur un point crucial nécessaire à la répartition des tâches, la capacité des individus d'une colonie à commuter efficacement entre des tâches soumises à des conditions environnementales changeantes. De plus, les propriétés intrinsèques des modèles basés sur l'utilisation de seuils conduisent à de larges populations de travailleurs inactifs. Nos résultats mettent en évidence les limites de ces modèles basés sur l'utilisation de seuils et fournissent un substitut adéquat. Ensemble, les expériences présentées dans cette thèse fournissent de nouvelles contributions pour comprendre comment la répartition du travail chez les insectes vivant en société est influencée par la fréquence d'accouplements des reines ainsi que par la structure génétique qui est à l'origine, pour un travailleur, du seuil de réponse pour une tâche. De plus, cette thèse fournit également un nouveau modèle décrivant les mécanismes qui sont à l'origine de l'allocation des tâches entre travailleurs, mécanismes qui peuvent être appliqué de manière plus générale que ceux couramment utilisés et basés sur des seuils de réponse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the country and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of service activities. The method is applied to the distribution services in the agglomeration of Lausanne. Results show the emergence of new centralities and can be analyzed in both transportation and social terms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of object and action words can be dissociated in aphasics, yet their anatomical correlates have been difficult to distinguish in functional imaging studies. To investigate the extent to which the cortical neural networks underlying object- and action-naming processing overlap, we performed electrostimulation mapping (ESM), which is a neurosurgical mapping technique routinely used to examine language function during brain-tumor resections. Forty-one right-handed patients who had surgery for a brain tumor were asked to perform overt naming of object and action pictures under stimulation. Overall, 73 out of the 633 stimulated cortical sites (11.5%) were associated with stimulation-induced language interferences. These interference sites were very much localized (<1 cm(2) ), and showed substantial variability across individuals in their exact localization. Stimulation interfered with both object and action naming over 44 sites, whereas it specifically interfered with object naming over 19 sites and with action naming over 10 sites. Specific object-naming sites were mainly identified in Broca's area (Brodmann area 44/45) and the temporal cortex, whereas action-naming specific sites were mainly identified in the posterior midfrontal gyrus (Brodmann area 6/9) and Broca's area (P = 0.003 by the Fisher's exact test). The anatomical loci we emphasized are in line with a cortical distinction between objects and actions based on conceptual/semantic features, so the prefrontal/premotor cortex would preferentially support sensorimotor contingencies associated with actions, whereas the temporal cortex would preferentially underpin (functional) properties of objects. Hum Brain Mapp 35:429-443, 2014. © 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Epilepsy surgery in young children with focal lesions offers a unique opportunity to study the impact of severe seizures on cognitive development during a period of maximal brain plasticity, if immediate control can be obtained. We studied 11 children with early refractory epilepsy (median onset, 7.5 months) due to focal lesion who were rendered seizure-free after surgery performed before the age of 6 years. Methods: The children were followed prospectively for a median of 5 years with serial neuropsychological assessments correlated with electroencephalography (EEG) and surgery-related variables. Results: Short-term follow-up revealed rapid cognitive gains corresponding to cessation of intense and propagated epileptic activity [two with early catastrophic epilepsy; two with regression and continuous spike-waves during sleep (CSWS) or frontal seizures]; unchanged or slowed velocity of progress in six children (five with complex partial seizures and frontal or temporal cortical malformations). Longer-term follow-up showed stabilization of cognitive levels in the impaired range in most children and slow progress up to borderline level in two with initial gains. Discussion: Cessation of epileptic activity after early surgery can be followed by substantial cognitive gains, but not in all children. In the short term, lack of catch-up may be explained by loss of retained function in the removed epileptogenic area; in the longer term, by decreased intellectual potential of genetic origin, irreversible epileptic damage to neural networks supporting cognitive functions, or reorganization plasticity after early focal lesions. Cognitive recovery has to be considered as a "bonus," which can be predicted in some specific circumstances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 2008 Data Fusion Contest organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee deals with the classification of high-resolution hyperspectral data from an urban area. Unlike in the previous issues of the contest, the goal was not only to identify the best algorithm but also to provide a collaborative effort: The decision fusion of the best individual algorithms was aiming at further improving the classification performances, and the best algorithms were ranked according to their relative contribution to the decision fusion. This paper presents the five awarded algorithms and the conclusions of the contest, stressing the importance of decision fusion, dimension reduction, and supervised classification methods, such as neural networks and support vector machines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. METHODS: Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. RESULTS: A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). CONCLUSION: Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body accelerations during human walking were recorded by a portable measuring device. A new method for parameterizing body accelerations and finding the pattern of walking is outlined. Two neural networks were designed to recognize each pattern and estimate the speed and incline of walking. Six subjects performed treadmill walking followed by self-paced walking on an outdoor test circuit involving roads of various inclines. The neural networks were first "trained" by known patterns of treadmill walking. Then the inclines, the speeds, and the distance covered during overground walking (outdoor circuit) were estimated. The results show a good agreement between actual and predicted variables. The standard deviation of estimated incline was less than 2.6% and the maximum of the coefficient of variation of speed estimation is 6%. To the best of our knowledge, these results constitute the first assessment of speed, incline and distance covered during level and slope walking and offer investigators a new tool for assessing levels of outdoor physical activity.