141 resultados para Computing device mechanism
Resumo:
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.
Resumo:
Ventricular assist devices (VADs) are used in treatment for terminal heart failure or as a bridge to transplantation. We created biVAD using the artificial muscles (AMs) that supports both ventricles at the same time. We developed the test bench (TB) as the in vitro evaluating system to enable the measurement of performance. The biVAD exerts different pressure between left and right ventricle like the heart physiologically does. The heart model based on child's heart was constructed in silicone. This model was fitted with the biVAD. Two pipettes containing water with an ultrasonic sensor placed on top of each and attached to ventricles reproduced the preload and the after load of each ventricle by the real-time measurement of the fluid height variation proportionally to the exerted pressure. The LabVIEW software extrapolated the displaced volume and the pressure generated by each side of our biVAD. The development of a standardized protocol permitted the validation of the TB for in vitro evaluation, measurement of the performances of the AM biVAD herein, and reproducibility of data.
Resumo:
Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.
Resumo:
PURPOSE: We report on the in vivo testing of a novel noninvasively adjustable glaucoma drainage device (AGDD), which features an adjustable outflow resistance, and assess the safety and efficiency of this implant. METHODS: Under general anesthesia, the AGDD was implanted on seven white New Zealand rabbits for a duration of 4 months under a scleral flap in a way analogous to the Ex-PRESS device and set in an operationally closed position. The IOP was measured on a regular basis on the operated and control eyes using a rebound tonometer. Once a month the AGDD was adjusted noninvasively from its fully closed to its fully open position and the resulting pressure drop was measured. The contralateral eye was not operated and served as control. After euthanization, the eyes were collected for histology evaluation. RESULTS: The mean preoperative IOP was 11.1 ± 2.4 mm Hg. The IOP was significantly lower for the operated eye (6.8 ± 2 mm Hg) compared to the nonoperated eye (13.1 ± 1.6 mm Hg) during the first 8 days after surgery. When opening the AGDD from its fully closed to fully open position, the IOP dropped significantly from 11.2 ± 2.9 to 4.8 ± 0.9 mm Hg (P < 0.05). CONCLUSIONS: Implanting the AGDD is a safe and uncomplicated surgical procedure. The fluidic resistance was noninvasively adjustable during the postoperative period with the AGDD between its fully closed and fully open positions.
Resumo:
Objectives: The AMS 800TM is the current artificial urinary sphincter (AUS) for incontinence due to intrinsic sphincter deficiency. Despite good clinical results, technical failures inherent to the hydraulic mechanism or urethral ischemic injury contribute to revisions up to 60%. We are developing an electronic AUS, called ARTUS to overcome the rigors of AMS. The objective of this study was to evaluate the technical efficacy and tissue tolerance of the ARTUS system in an animal model.Methods: The ARTUS is composed by three parts: the contractile unit, a series of rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor. In the first phase a three-rings device was used while in the second phase a two-rings ARTUS was used. The device was implanted in 14 sheep divided in two groups of six and eight animals for study purpose. The first group aimed at bladder leak point pressure (BLPP) measurement and validation of the animal model; the second group aimed at verifying mid-term tissue tolerance by explants at twelve weeks. General animal tolerance was also evaluated.Results: The ARTUS system implantation was uneventful. When the system was activated, the BLPP was measured at 1.038±0.044 bar (mean±SD). Urethral tissue analysis did not show significant morphological changes. No infection and no sign of discomfort were noted in animals at 12 weeks.Conclusions: The ARTUS proved to be effective in continence achievement in this study. Histological results support our idea that a sequential alternative mode can avoid urethral atrophy and ischemia. Further technical developments are needed to verify long-term outcome and permit human use.
Resumo:
Introduction. Respiratory difficulties in athletes are common, especially in adolescents, even in the absence of exercise-induced bronchoconstriction. Immaturity of the respiratory muscles coupling at high respiratory rates could be a potential mechanism. Whether respiratory muscle training (RMT) can positively influence it is yet unknown. Goal. We investigate the effects of RMT on ventilation and performance parameters in adolescent athletes and hypothesize that RMT will enhance respiratory capacity. Methods. 12 healthy subjects (8 male, 4 female, 17±0.5 years) from a sports/study high school class, competitively involved in various sports (minimum of 10 hours per week) underwent respiratory function testing, maximal minute ventilation (MMV) measurements and a maximal treadmill incremental test with VO2max and ventilatory thresholds (VT1 and VT2) determination. They then underwent one month of RMT (4 times/week) using a eucapnic hyperventilation device, with an incremental training program. The same tests were repeated after RMT. Results. Subjects completed 14.8 sessions of RMT, with an increase in total ventilation per session of 211±29% during training. Borg scale evaluation of the RMT session was unchanged or reduced in all subjects, despite an increase in total respiratory work. No changes (p>0.05) were observed pre/post RMT in VO2max (53.4±7.5 vs 51.6±7.7 ml/kg/min), VT2 (14.4±1.4 vs 14.0±1.1 km/h) or Speed max at end of test (16.1±1.7 vs 15.8±1.7 km/h). MVV increased by 9.2% (176.7±36.9 vs 192.9±32.6 l/min, p<0.001) and FVC by 3.3% (6.70±0.75 vs 4.85±0.76 litres, p<0.05). Subjective evaluation of respiratory sensations during exercise and daily living were also improved. Conclusions. RMT improves MMV and FVC in adolescent athletes, along with important subjective respiratory benefits, although no changes are seen in treadmill maximal performance tests and VO2max measurements. RMT can be easily performed in adolescent without side effects, with a potential for improvement in training capacity and overall well-being.
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: The AMS 800 urinary control system is the gold standard for the treatment of urinary incontinence due to sphincter insufficiency. Despite excellent functional outcome and latest technological improvements, the revision rate remains significant. To overcome the shortcomings of the current device, we developed a modern electromechanical artificial urinary sphincter. The results demonstrated that this new sphincter is effective and well tolerated up to 3 months. This preliminary study represents a first step in the clinical application of novel technologies and an alternative compression mechanism to the urethra. OBJECTIVES: To evaluate the effectiveness in continence achievement of a new electromechanical artificial urinary sphincter (emAUS) in an animal model. To assess urethral response and animal general response to short-term and mid-term activation of the emAUS. MATERIALS AND METHODS: The principle of the emAUS is electromechanical induction of alternating compression of successive segments of the urethra by a series of cuffs activated by artificial muscles. Between February 2009 and May 2010 the emAUS was implanted in 17 sheep divided into three groups. The first phase aimed to measure bladder leak point pressure during the activation of the device. The second and third phases aimed to assess tissue response to the presence of the device after 2-9 weeks and after 3 months respectively. Histopathological and immunohistochemistry evaluation of the urethra was performed. RESULTS: Bladder leak point pressure was measured at levels between 1091 ± 30.6 cmH2 O and 1244.1 ± 99 cmH2 O (mean ± standard deviation) depending on the number of cuffs used. At gross examination, the explanted urethra showed no sign of infection, atrophy or stricture. On microscopic examination no significant difference in structure was found between urethral structure surrounded by a cuff and control urethra. In the peripheral tissues, the implanted material elicited a chronic foreign body reaction. Apart from one case, specimens did not show significant presence of lymphocytes, polymorphonuclear leucocytes, necrosis or cell degeneration. Immunohistochemistry confirmed the absence of macrophages in the samples. CONCLUSIONS: This animal study shows that the emAUS can provide continence. This new electronic controlled sequential alternating compression mechanism can avoid damage to urethral vascularity, at least up to 3 months after implantation. After this positive proof of concept, long-term studies are needed before clinical application could be considered.
Resumo:
Introduction: Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the Trabecular Bone Score (TBS) measure. TBS is a novel grey-level texture measurement reflecting bone micro-architecture based on the use of experimental variograms of 2D projection images. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis value, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. Method: The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goals of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. Results: We included 631 women: mean age 67.4±6.7 y, BMI 26.1±4.6, mean lumbar spine BMD 0.943±0.168 (T-score -1.4 SD), TBS 1.271±0.103. As expected, correlation between BMD and site matched TBS is low (r2=0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2- 2.5), 1.6 (1.2-2.1), 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < -2.5 SD or a TBS < 1.200. If we combine a BMD < -2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. Conclusion: As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been miss-classified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS & HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.
Resumo:
In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM.
Resumo:
The pharmacological activity of several amphiphilic drugs is often related to their ability to interact with biological membranes. Propranolol is an efficient multidrug resistance (MDR) modulator; it is a nonselective beta-blocker and is thought to reduce hypertension by decreasing the cardiac frequency and thus blood pressure. It is used in drug delivery studies in order to treat systemic hypertension. We are interested in the interaction of propranolol with artificial membranes, as liposomes of controllable size are used as biocompatible and protective structures to encapsulate labile molecules, such as proteins, nucleic acids or drugs, for pharmaceutical, cosmetic or chemical applications. We present here a study of the interaction of propranolol, a cationic surfactant, with pure egg phosphatidylcholine (EPC) vesicles. The gradual transition from liposome to micelle of EPC vesicles in the presence of propranolol was monitored by time-resolved electron cryo-microscopy (cryo-EM) under different experimental conditions. The liposome-drug interaction was studied with varying drug/lipid (D/L) ratios and different stages were captured by direct thin-film vitrification. The time-series cryo-EM data clearly illustrate the mechanism of action of propranolol on the liposome structure: the drug disrupts the lipid bilayer by perturbing the local organization of the phospholipids. This is followed by the formation of thread-like micelles, also called worm-like micelles (WLM), and ends with the formation of spherical (globular) micelles. The overall reaction is slow, with the process taking almost two hours to be completed. The effect of a monovalent salt was also investigated by repeating the lipid-surfactant interaction experiments in the presence of KCl as an additive to the lipid/drug suspension. When KCl was added in the presence of propranolol the overall reaction was the same but with slower kinetics, suggesting that this monovalent salt affects the general lipid-to-micelle transition by stabilizing the membrane, presumably by binding to the carbonyl chains of the phosphatidylcholine.
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION: Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.