33 resultados para Computer- aided Engineering
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
Trans-apical aortic valve replacement (AVR) is a new and rapidly growing therapy. However, there are only few training opportunities. The objective of our work is to build an appropriate artificial model of the heart that can replace the use of animals for surgical training in trans-apical AVR procedures. To reduce the necessity for fluoroscopy, we pursued the goal of building a translucent model of the heart that has nature-like dimensions. A simplified 3D model of a human heart with its aortic root was created in silico using the SolidWorks Computer-Aided Design (CAD) program. This heart model was printed using a rapid prototyping system developed by the Fab@Home project and dip-coated two times with dispersion silicone. The translucency of the heart model allows the perception of the deployment area of the valved-stent without using heavy imaging support. The final model was then placed in a human manikin for surgical training on trans-apical AVR procedure. Trans-apical AVR with all the necessary steps (puncture, wiring, catheterization, ballooning etc.) can be realized repeatedly in this setting.
Resumo:
A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.
Resumo:
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Resumo:
We report on the medical history of a Caucasian smoker woman diagnosed with a stage IV NSCLC adenocarcinoma, characterized by a rare epidermal growth factor receptor (EGFR) point mutation in exon 21 codon 843 (p.V843I/c.2527G>A/COSMIC ID 85894). This genetic alteration revealed to be germline, after its presence was demonstrated in chondroblasts from the bone biopsy. While it is the first description of germline V843I mutation without concomitant additional known EGFR activating mutation, we modeled the EGFR ATP catalytic domain in complex with ATP, gefitinib and erlotinib using computer-aided approaches to estimate possible changes in affinity upon the V843I mutation.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.
Resumo:
A method is proposed for the estimation of absolute binding free energy of interaction between proteins and ligands. Conformational sampling of the protein-ligand complex is performed by molecular dynamics (MD) in vacuo and the solvent effect is calculated a posteriori by solving the Poisson or the Poisson-Boltzmann equation for selected frames of the trajectory. The binding free energy is written as a linear combination of the buried surface upon complexation, SASbur, the electrostatic interaction energy between the ligand and the protein, Eelec, and the difference of the solvation free energies of the complex and the isolated ligand and protein, deltaGsolv. The method uses the buried surface upon complexation to account for the non-polar contribution to the binding free energy because it is less sensitive to the details of the structure than the van der Waals interaction energy. The parameters of the method are developed for a training set of 16 HIV-1 protease-inhibitor complexes of known 3D structure. A correlation coefficient of 0.91 was obtained with an unsigned mean error of 0.8 kcal/mol. When applied to a set of 25 HIV-1 protease-inhibitor complexes of unknown 3D structures, the method provides a satisfactory correlation between the calculated binding free energy and the experimental pIC5o without reparametrization.
Resumo:
In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.
Resumo:
Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.
Resumo:
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.
Resumo:
An image analysis method is presented which allows for the reconstruction of the three-dimensional path of filamentous objects from two of their projections. Starting with stereo pairs, this method is used to trace the trajectory of DNA molecules embedded in vitreous ice and leads to a faithful representation of their three-dimensional shape in solution. This computer-aided reconstruction is superior to the subjective three-dimensional impression generated by observation of stereo pairs of micrographs because it enables one to look at the reconstructed molecules from any chosen direction and distance and allows quantitative analysis such as determination of distances, curvature, persistence length, and writhe of DNA molecules in solution.
Resumo:
Breast cancer is a public health issue in numerous countries. Multidisciplinary collaboration is required for patient care, research, and also education of future physicians. This paper uses Kern's framework for curriculum design to demonstrate how a breast diseases module for undergraduate medical students created in 1993 evolved over 15 years. The main outcomes of program refinements were better integrated course content, the development of electronic course documents, and implementation of computer-aided small group learning. A main future challenge is to further develop efficient instructional strategies in line with well-defined learning needs for undergraduate students.
Resumo:
Understanding molecular recognition is one major requirement for drug discovery and design. Physicochemical and shape complementarity between two binding partners is the driving force during complex formation. In this study, the impact of shape within this process is analyzed. Protein binding pockets and co-crystallized ligands are represented by normalized principal moments of inertia ratios (NPRs). The corresponding descriptor space is triangular, with its corners occupied by spherical, discoid, and elongated shapes. An analysis of a selected set of sc-PDB complexes suggests that pockets and bound ligands avoid spherical shapes, which are, however, prevalent in small unoccupied pockets. Furthermore, a direct shape comparison confirms previous studies that on average only one third of a pocket is filled by its bound ligand, supplemented by a 50 % subpocket coverage. In this study, we found that shape complementary is expressed by low pairwise shape distances in NPR space, short distances between the centers-of-mass, and small deviations in the angle between the first principal ellipsoid axes. Furthermore, it is assessed how different binding pocket parameters are related to bioactivity and binding efficiency of the co-crystallized ligand. In addition, the performance of different shape and size parameters of pockets and ligands is evaluated in a virtual screening scenario performed on four representative targets.