34 resultados para Computational models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate their role in receptor coupling to G(q), we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the alpha(1b)-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the alpha(1b)-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg(254) and Lys(258) in the third intracellular loop and Lys(291) at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val(147) and Leu(151) in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg(254), Lys(258), as well as Leu(151) are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the alpha(1b)-AR. These findings contribute to the delineation of the molecular determinants of the alpha(1b)-AR/G(q) interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. RESULTS: We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. CONCLUSIONS: SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(1R)-Normetanephrine is the natural stereoisomeric substrate for sulfotransferase 1A3 (SULT1A3)-catalyzed sulfonation. Nothing appears known on the enantioselectivity of the reaction despite its potential significance in the metabolism of adrenergic amines and in clinical biochemistry. We confronted the kinetic parameters of the sulfoconjugation of synthetic (1R)-normetanephrine and (1S)-normetanephrine by recombinant human SULT1A3 to a docking model of each normetanephrine enantiomer with SULT1A3 and the 3'-phosphoadenosine-5'-phosphosulfate cofactor on the basis of molecular modeling and molecular dynamics simulations of the stability of the complexes. The K(M) , V(max) , and k(cat) values for the sulfonation of (1R)-normetanephrine, (1S)-normetanephrine, and racemic normetanephrine were similar. In silico models were consistent with these findings as they showed that the binding modes of the two enantiomers were almost identical. In conclusion, SULT1A3 is not substrate-enantioselective toward normetanephrine, an unexpected finding explainable by a mutual adaptability between the ligands and SULT1A3 through an "induced-fit model" in the catalytic pocket. Chirality, 00:000-000, 2012.© 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: HIV targets primary CD4(+) T cells. The virus depends on the physiological state of its target cells for efficient replication, and, in turn, viral infection perturbs the cellular state significantly. Identifying the virus-host interactions that drive these dynamic changes is important for a better understanding of viral pathogenesis and persistence. The present review focuses on experimental and computational approaches to study the dynamics of viral replication and latency. RECENT FINDINGS: It was recently shown that only a fraction of the inducible latently infected reservoirs are successfully induced upon stimulation in ex-vivo models while additional rounds of stimulation make allowance for reactivation of more latently infected cells. This highlights the potential role of treatment duration and timing as important factors for successful reactivation of latently infected cells. The dynamics of HIV productive infection and latency have been investigated using transcriptome and proteome data. The cellular activation state has shown to be a major determinant of viral reactivation success. Mathematical models of latency have been used to explore the dynamics of the latent viral reservoir decay. SUMMARY: Timing is an important component of biological interactions. Temporal analyses covering aspects of viral life cycle are essential for gathering a comprehensive picture of HIV interaction with the host cell and untangling the complexity of latency. Understanding the dynamic changes tipping the balance between success and failure of HIV particle production might be key to eradicate the viral reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive biomarker of Alzheimer's disease (AD); however, there is less certainty about its dependency on the staging of AD. We use classical group analyses and automated machine learning classification of standard structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical dementia. Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative were stratified into 4 groups according to the clinical status-(1) AD patients; (2) mild cognitive impairment (MCI) converters; (3) MCI nonconverters; and (4) healthy controls-and submitted to a support vector machine. The obtained classifier was significantly above the chance level (62%) for detecting AD already 4 years before conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a subgroup of control subjects with brain structure and cognitive changes highly similar to those observed in AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested by current models. The demonstrated differential spatial pattern of atrophy between correctly and incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process underlying clinically identified AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a two-level model of concurrent communicating systems (CCS) to serve as a basis formachine consciousness. A language implementing threads within logic programming is ¯rstintroduced. This high-level framework allows for the de¯nition of abstract processes that can beexecuted on a virtual machine. We then look for a possible grounding of these processes into thebrain. Towards this end, we map abstract de¯nitions (including logical expressions representingcompiled knowledge) into a variant of the pi-calculus. We illustrate this approach through aseries of examples extending from a purely reactive behavior to patterns of consciousness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN. Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement. Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. -- The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent. The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN. Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally. Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis.