82 resultados para Computational complexity
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.
Resumo:
Methods like Event History Analysis can show the existence of diffusion and part of its nature, but do not study the process itself. Nowadays, thanks to the increasing performance of computers, processes can be studied using computational modeling. This thesis presents an agent-based model of policy diffusion mainly inspired from the model developed by Braun and Gilardi (2006). I first start by developing a theoretical framework of policy diffusion that presents the main internal drivers of policy diffusion - such as the preference for the policy, the effectiveness of the policy, the institutional constraints, and the ideology - and its main mechanisms, namely learning, competition, emulation, and coercion. Therefore diffusion, expressed by these interdependencies, is a complex process that needs to be studied with computational agent-based modeling. In a second step, computational agent-based modeling is defined along with its most significant concepts: complexity and emergence. Using computational agent-based modeling implies the development of an algorithm and its programming. When this latter has been developed, we let the different agents interact. Consequently, a phenomenon of diffusion, derived from learning, emerges, meaning that the choice made by an agent is conditional to that made by its neighbors. As a result, learning follows an inverted S-curve, which leads to partial convergence - global divergence and local convergence - that triggers the emergence of political clusters; i.e. the creation of regions with the same policy. Furthermore, the average effectiveness in this computational world tends to follow a J-shaped curve, meaning that not only time is needed for a policy to deploy its effects, but that it also takes time for a country to find the best-suited policy. To conclude, diffusion is an emergent phenomenon from complex interactions and its outcomes as ensued from my model are in line with the theoretical expectations and the empirical evidence.Les méthodes d'analyse de biographie (event history analysis) permettent de mettre en évidence l'existence de phénomènes de diffusion et de les décrire, mais ne permettent pas d'en étudier le processus. Les simulations informatiques, grâce aux performances croissantes des ordinateurs, rendent possible l'étude des processus en tant que tels. Cette thèse, basée sur le modèle théorique développé par Braun et Gilardi (2006), présente une simulation centrée sur les agents des phénomènes de diffusion des politiques. Le point de départ de ce travail met en lumière, au niveau théorique, les principaux facteurs de changement internes à un pays : la préférence pour une politique donnée, l'efficacité de cette dernière, les contraintes institutionnelles, l'idéologie, et les principaux mécanismes de diffusion que sont l'apprentissage, la compétition, l'émulation et la coercition. La diffusion, définie par l'interdépendance des différents acteurs, est un système complexe dont l'étude est rendue possible par les simulations centrées sur les agents. Au niveau méthodologique, nous présenterons également les principaux concepts sous-jacents aux simulations, notamment la complexité et l'émergence. De plus, l'utilisation de simulations informatiques implique le développement d'un algorithme et sa programmation. Cette dernière réalisée, les agents peuvent interagir, avec comme résultat l'émergence d'un phénomène de diffusion, dérivé de l'apprentissage, où le choix d'un agent dépend en grande partie de ceux faits par ses voisins. De plus, ce phénomène suit une courbe en S caractéristique, poussant à la création de régions politiquement identiques, mais divergentes au niveau globale. Enfin, l'efficacité moyenne, dans ce monde simulé, suit une courbe en J, ce qui signifie qu'il faut du temps, non seulement pour que la politique montre ses effets, mais également pour qu'un pays introduise la politique la plus efficace. En conclusion, la diffusion est un phénomène émergent résultant d'interactions complexes dont les résultats du processus tel que développé dans ce modèle correspondent tant aux attentes théoriques qu'aux résultats pratiques.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Resumo:
The aim of this study was to propose a methodology allowing a detailed characterization of body sit-to-stand/stand-to-sit postural transition. Parameters characterizing the kinematics of the trunk movement during sit-to-stand (Si-St) postural transition were calculated using one initial sensor system fixed on the trunk and a data logger. Dynamic complexity of these postural transitions was estimated by fractal dimension of acceleration-angular velocity plot. We concluded that this method provides a simple and accurate tool for monitoring frail elderly and to objectively evaluate the efficacy of a rehabilitation program.
Resumo:
While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies.
Resumo:
The family doctor facing complexity must decide in situations of low certainty and low agreement. Complexity is in part subjective but can also be measured. Changes in the health systems aim to reduce health costs. They tend to give priority to simple situations and to neglect complexity. One role of an academic institute of family medicine is to present and promote the results of scientific research supporting the principles of family medicine, taking into account both the local context and health systems reforms. In Switzerland the new challenge is the introduction of managed care.
Resumo:
In this article we provide a comprehensive literature review on the in vivo assessment of use-dependant brain structure changes in humans using magnetic resonance imaging (MRI) and computational anatomy. We highlight the recent findings in this field that allow the uncovering of the basic principles behind brain plasticity in light of the existing theoretical models at various scales of observation. Given the current lack of in-depth understanding of the neurobiological basis of brain structure changes we emphasize the necessity of a paradigm shift in the investigation and interpretation of use-dependent brain plasticity. Novel quantitative MRI acquisition techniques provide access to brain tissue microstructural properties (e.g., myelin, iron, and water content) in-vivo, thereby allowing unprecedented specific insights into the mechanisms underlying brain plasticity. These quantitative MRI techniques require novel methods for image processing and analysis of longitudinal data allowing for straightforward interpretation and causality inferences.
Resumo:
Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.
Resumo:
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.