29 resultados para Coal-handling machinery
Resumo:
In vivo localized proton magnetic resonance spectroscopy (1H MRS) became a powerful and unique technique to non-invasively investigate brain metabolism of rodents and humans. The main goal of 1H MRS is the reliable quantification of concentrations of metabolites (neurochemical profile) in a well-defined region of the brain. The availability of very high magnetic field strengths combined with the possibility of acquiring spectra at very short echo time have dramatically increased the number of constituents of the neurochemical profile. The quantification of spectra measured at short echo times is complicated by the presence of macromolecule signals of particular importance at high magnetic fields. An error in the macromolecule estimation can lead to substantial errors in the obtained neurochemical profile. The purpose of the present review is to overview methods of high field 1H MRS with a focus on the metabolite quantification, in particular in handling signals of macromolecules. Three main approaches of handling signals of macromolecules are described, namely mathematical estimation of macromolecules, measurement of macromolecules in vivo, and direct acquisition of the in vivo spectrum without the contribution of macromolecules.
Resumo:
OBJECTIVES: Renal tubular sodium handling was measured in healthy subjects submitted to acute and chronic salt-repletion/salt-depletion protocols. The goal was to compare the changes in proximal and distal sodium handling induced by the two procedures using the lithium clearance technique. METHODS: In nine subjects, acute salt loading was obtained with a 2 h infusion of isotonic saline, and salt depletion was induced with a low-salt diet and furosemide. In the chronic protocol, 15 subjects randomly received a low-, a regular- and a high-sodium diet for 1 week. In both protocols, renal and systemic haemodynamics and urinary electrolyte excretion were measured after an acute water load. In the chronic study, sodium handling was also determined, based on 12 h day- and night-time urine collections. RESULTS: The acute and chronic protocols induced comparable changes in sodium excretion, renal haemodynamics and hormonal responses. Yet, the relative contribution of the proximal and distal nephrons to sodium excretion in response to salt loading and depletion differed in the two protocols. Acutely, subjects appeared to regulate sodium balance mainly by the distal nephron, with little contribution of the proximal tubule. In contrast, in the chronic protocol, changes in sodium reabsorption could be measured both in the proximal and distal nephrons. Acute water loading was an important confounding factor which increased sodium excretion by reducing proximal sodium reabsorption. This interference of water was particularly marked in salt-depleted subjects. CONCLUSION: Acute and chronic salt loading/salt depletion protocols investigate different renal mechanisms of control of sodium balance. The endogenous lithium clearance technique is a reliable method to assess proximal sodium reabsorption in humans. However, to investigate sodium handling in diseases such as hypertension, lithium should be measured preferably on 24 h or overnight urine collections to avoid the confounding influence of water.
Resumo:
Study Objectives: "Gentle handling" has become a method of choice for 4-6 h sleep deprivation in mice, with repeated brief handling applied before sleep deprivation to induce habituation. To verify whether mice do indeed habituate was assess how 6 days of repeated brief handling impact on resting behavior, on stress, and on the subunit content of N-methyl-D-aspartate receptors (NMDARs) at hippocampal synapases, which is altered by sleep loss. We discuss whether repeated handling biases the outcome of subsequent sleep deprivation.Design: Adult C5BL/6J mice, maintained on a 12 h-12 h light-dark cycle, were left undistrubed for 3 days, then handled during 3 min daily for 6 days in the middle of the light phase. Mice were continuously monitored for their resting time serum conticosterona levels and synaptic NMDAR subunit composition were quantified.Results: Handling caused a similar to 25% reduction of resting time throughtout all handling days, After six, but not after one day of handling, mice had elevated serum corticosterone levels. Six-day handling augmented the presence of the NR2A subunit of NMDARs at hippocampal synapses.Conclusion: Repeated handling induces behavoir and neurochemical alterations that are absent in undisturbed animals. The presistently reduced resting time and the delayed increase in conticosterone levels indicate that mice do not habituate to handling over a 1-week period. Handling-induced modifications bias effects of gentle handling-induced sleep deprivation on sleep homeostasis, stress, glutamate receptor composition and signaling. A standardization of sleep deprivation procedures involving gengle handling will be important for unequivocally specifying how acute sleep loss affects brain function.
Resumo:
BACKGROUND: Sodium wasting during the night has been postulated as a potential pathophysiological mechanism in patients suffering from orthostatic hypotension due to severe autonomic deficiency. METHODS: In this study, the diurnal variations in creatinine clearance, sodium excretion and segmental renal tubular handling of sodium were evaluated in 18 healthy subjects and 20 young patients with orthostatic hypotension (OH). In addition, 24-hour ambulatory blood pressure and the neuro-hormonal response to changes in posture were determined. The patients and their controls were studied on a free sodium intake. In a second protocol, 10 controls and 10 patients were similarly investigated after one week of a high salt diet (regular diet + 6 g NaCl/day). RESULTS: Our results demonstrate that, in contrast to normal subjects in whom no significant changes in glomerular filtration, sodium excretion and segmental sodium reabsorption were observed throughout the day, patients with OH were characterized by a significant increase in glomerular filtration rate during the nighttime (P = 0.03) and significant increases in urinary lithium excretion (P < 0.05) and lithium clearance (P = 0.05) during the night, suggesting a decreased proximal reabsorption of sodium. On a high sodium diet, the symptoms of orthostatic hypotension and the circadian variations in sodium reabsorption were significantly blunted. CONCLUSIONS: These results suggest that, while the patient is in a supine position the effective blood volume of those with OH becomes excessive due to the increased venous return. Hence, the kidney responds with an increase in glomerular filtration and a relative escape of sodium from the proximal tubular segments. These circadian variations in renal sodium handling may contribute to the maintenance of the orthostatic syndrome.
Resumo:
The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.
Resumo:
Résumé : La microautophagie du noyau est un processus découvert chez la levure S. cerevisiae qui vise la dégradation de portions nucléaires dans la lumière vacuolaire. Ce processus appelé PMN (de l'anglais Piecemeal Microautophagy of the Nucleus) est induit dans des conditions de stress cellulaire comme la privation de nutriments, mais également par l'utilisation d'une drogue : la rapamycine. La PMN est due à l'interaction directe d'une protéine de la membrane externe de l'enveloppe nucléaire Nvj1p, et d'une protéine de la membrane vacuolaire Vac8p. L'interaction de ces deux protéines forme la jonction noyau-vacuole. Cette jonction guide la formation d'une invagination, qui englobe et étire vers la lumière vacuolaire une partie du noyau sous la forme d'un sac. Il s'en suit la libération d'une vésicule dégradée par les hydrolases. Les mécanismes moléculaires intervenant à différentes étapes de ce processus sont inconnus. Le but de ma thèse est de mettre en évidence de nouveaux acteurs qui interviennent dans la PMN. Dans la première partie de cette étude, nous présentons une procédure de sélection à la recherche de candidats jouant un rôle dans la PMN. Cette sélection a été effectuée dans la collection de mutants commercialisée chez Euroscarf. La procédure reposait sur l'observation que le nucléole (représenté par Nop1p) est le substrat préférentiel de la PMN dans des expériences de microscopie faites après induction de la PMN avec la rapamycine. Nous avons ainsi transformé la collection de mutants avec un plasmide portant le marqueur du nucléole Noplp. Par la suite, nous avons cherché par microscopie les mutants incapables de transférer Nop1p du noyau à la vacuole. Nous avons trouvé 318 gènes présentant un défaut de transfert de Nop1p par PMN. Ces gènes ont été classés par grandes familles fonctionnelles et aussi par leur degré de défaut de PMN. Egalement dans cette partie de l'étude, nous avons décrit des mutants impliqués dans le processus, à des étapes différentes. Dans la seconde partie de l'étude, nous avons regardé l'implication et le rôle de la V-ATPase, (une pompe à protons de la membrane vacuolaire}, sélectionnée parmi les candidats, dans le processus de PMN. Les inhibiteurs de ce complexe, comme la concanamycineA, bloquent l'activité PMN et semblent affecter le processus à deux étapes différentes. D'un autre côté, les jonctions «noyau-vacuole »forment une barrière de diffusion au niveau de la membrane vacuolaire, de laquelle Vphlp, une protéine de la V-ATPase, est exclue.
Resumo:
Volumes of data used in science and industry are growing rapidly. When researchers face the challenge of analyzing them, their format is often the first obstacle. Lack of standardized ways of exploring different data layouts requires an effort each time to solve the problem from scratch. Possibility to access data in a rich, uniform manner, e.g. using Structured Query Language (SQL) would offer expressiveness and user-friendliness. Comma-separated values (CSV) are one of the most common data storage formats. Despite its simplicity, with growing file size handling it becomes non-trivial. Importing CSVs into existing databases is time-consuming and troublesome, or even impossible if its horizontal dimension reaches thousands of columns. Most databases are optimized for handling large number of rows rather than columns, therefore, performance for datasets with non-typical layouts is often unacceptable. Other challenges include schema creation, updates and repeated data imports. To address the above-mentioned problems, I present a system for accessing very large CSV-based datasets by means of SQL. It's characterized by: "no copy" approach - data stay mostly in the CSV files; "zero configuration" - no need to specify database schema; written in C++, with boost [1], SQLite [2] and Qt [3], doesn't require installation and has very small size; query rewriting, dynamic creation of indices for appropriate columns and static data retrieval directly from CSV files ensure efficient plan execution; effortless support for millions of columns; due to per-value typing, using mixed text/numbers data is easy; very simple network protocol provides efficient interface for MATLAB and reduces implementation time for other languages. The software is available as freeware along with educational videos on its website [4]. It doesn't need any prerequisites to run, as all of the libraries are included in the distribution package. I test it against existing database solutions using a battery of benchmarks and discuss the results.
Resumo:
Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.
Resumo:
The 2009 International Society of Urological Pathology Consensus Conference in Boston made recommendations regarding the standardization of pathology reporting of radical prostatectomy specimens. Issues relating to the infiltration of tumor into the seminal vesicles and regional lymph nodes were coordinated by working group 4. There was a consensus that complete blocking of the seminal vesicles was not necessary, although sampling of the junction of the seminal vesicles and prostate was mandatory. There was consensus that sampling of the vas deferens margins was not obligatory. There was also consensus that muscular wall invasion of the extraprostatic seminal vesicle only should be regarded as seminal vesicle invasion. Categorization into types of seminal vesicle spread was agreed by consensus to be not necessary. For examination of lymph nodes, there was consensus that special techniques such as frozen sectioning were of use only in high-risk cases. There was no consensus on the optimal sampling method for pelvic lymph node dissection specimens, although there was consensus that all lymph nodes should be completely blocked as a minimum. There was also a consensus that a count of the number of lymph nodes harvested should be attempted. In view of recent evidence, there was consensus that the diameter of the largest lymph node metastasis should be measured. These consensus decisions will hopefully clarify the difficult areas of pathological assessment in radical prostatectomy evaluation and improve the concordance of research series to allow more accurate assessment of patient prognosis.
Resumo:
OBJECTIVE: The basolateral Na pump drives renotubular reabsorption. In cultured renal cells, mutant adducins, as well as sub-nanomolar ouabain concentrations, stimulate the Na-K pump. METHODS: To determine whether these factors interact and affect Na handling and blood pressure (BP) in vivo, we studied 155 untreated hypertensive patients subdivided on the basis of their plasma endogenous ouabain or alpha-adducin genotype (ADD1 Gly460Trp-rs4961). RESULTS: Under basal conditions, proximal tubular reabsorption and plasma Na were higher in patients with mutated Trp ADD1 or increased endogenous ouabain (P = 0.002 and 0.05, respectively). BPs were higher in the high plasma endogenous ouabain group (P = 0.001). Following volume loading, the increment in BP (7.73 vs. 4.81 mmHg) and the slopes of the relationship between BP and Na excretion were greater [0.017 +/- 0.002 vs. 0.009 +/- 0.003 mmHg/(muEq min)] in ADD1 Trp vs. ADD1 Gly carriers (P < 0.05). BP changes were similar, whereas the slopes of the relationship between BP and Na excretion were lower [0.016 +/- 0.003 vs. 0.008 +/- 0.002 mmHg/(muEq min)] in patients with low vs. high endogenous ouabain (P < 0.05). In patients with high endogenous ouabain, volume loading increased the BP in the ADD1 Trp group but not in the Gly group (P < 0.05). Thus, patients with ADD1 Trp alleles are sensitive to salt and tubular Na reabsorption remains elevated after volume expansion. CONCLUSION: With saline loading, BP changes are similar in high and low endogenous ouabain patients, whereas tubular Na reabsorption increases in the high endogenous ouabain group. Saline loading unmasks differences in renal Na handling in patients with mutant adducin or high endogenous ouabain and exposes an interaction of endogenous ouabain and Trp alleles on BP.
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
As production and use of nanomaterials in commercial products grow it is imperative to ensure these materials are used safely with minimal unwanted impacts on human health or the environment. Foremost among the populations of potential concern are workers who handle nanomaterials in a variety of occupational settings, including university laboratories, industrial manufacturing plants and other institutions. Knowledge about prudent practices for handling nanomaterials is being developed by many groups around the world but may be communicated in a way that is difficult for practitioners to access or use. The GoodNanoGuide is a collaborative, open-access project aimed at creating an international forum for the development and discussion of prudent practices that can be used by researchers, workers and their representatives, occupational safety professionals, governmental officials and even the public. The GoodNanoGuide is easily accessed by anyone with access to a web browser and aims to become a living repository of good practices for the nanotechnology enterprise. Interested individuals are invited to learn more about the GoodNanoGuide at http://goodnanoguide.org.
Resumo:
Proteinuria and hyperphosphatemia are cardiovascular risk factors independent of GFR. We hypothesized that proteinuria induces relative phosphate retention via increased proximal tubule phosphate reabsorption. To test the clinical relevance of this hypothesis, we studied phosphate handling in nephrotic children and patients with CKD. Plasma fibroblast growth factor 23 (FGF-23) concentration, plasma phosphate concentration, and tubular reabsorption of phosphate increased during the proteinuric phase compared with the remission phase in nephrotic children. Cross-sectional analysis of a cohort of 1738 patients with CKD showed that albuminuria≥300 mg/24 hours is predictive of higher phosphate levels, independent of GFR and other confounding factors. Albuminuric patients also displayed higher plasma FGF-23 and parathyroid hormone levels. To understand the molecular mechanisms underlying these observations, we induced glomerular proteinuria in two animal models. Rats with puromycin-aminonucleoside-induced nephrotic proteinuria displayed higher renal protein expression of the sodium-phosphate co-transporter NaPi-IIa, lower renal Klotho protein expression, and decreased phosphorylation of FGF receptor substrate 2α, a major FGF-23 receptor substrate. These findings were confirmed in transgenic mice that develop nephrotic-range proteinuria resulting from podocyte depletion. In vitro, albumin did not directly alter phosphate uptake in cultured proximal tubule OK cells. In conclusion, we show that proteinuria increases plasma phosphate concentration independent of GFR. This effect relies on increased proximal tubule NaPi-IIa expression secondary to decreased FGF-23 biologic activity. Proteinuria induces elevation of both plasma phosphate and FGF-23 concentrations, potentially contributing to cardiovascular disease.