136 resultados para Closed swimming chambers, gas chromatography
Resumo:
A new analytical approach for measuring methane in tissues is presented. For the first time, the use of in situ-produced, stably labelled CDH(3) provides a reliable and precise methane quantification. This method was applied to postmortem samples obtained from two victims to help determine the explosion origin. There was evidence of methane in the adipose tissue (82 nmol/g) and cardiac blood (1.3 nmol/g) of one victim, which corresponded to a lethal methane outburst. These results are discussed in the context of the available literature to define an analysis protocol for application in the event of a gas explosion.
Resumo:
Saffaj et al. recently criticized our method of monitoring carbon dioxide in human postmortem cardiac gas samples using Headspace-Gas Chromatography-Mass Spectrometry. According to the authors, their demonstration, based on the latest SFSTP guidelines (established after 2007 [1,2]) fitted for the validation of drug monitoring bioanalytical methods, has put in evidence potential errors. However, our validation approach was built using SFSTP guidelines established before 2007 [3-6]. We justify the use of these guidelines because of the post-mortem context of the study (and not clinical) and the gaseous state of the sample (and not solid or liquid). Using these guidelines, our validation remains correct.
Resumo:
The most frequently used method to demonstrate testosterone abuse is the determination of the testosterone and epitestosterone concentration ratio (T/E ratio) in urine. Nevertheless, it is known that factors other than testosterone administration may increase the T/E ratio. In the last years, the determination of the carbon isotope ratio has proven to be the most promising method to help discriminate between naturally elevated T/E ratios and those reflecting T use. In this paper, an excretion study following oral administration of 40 mg testosterone undecanoate initially and 13 h later is presented. Four testosterone metabolites (androsterone, etiocholanolone, 5 alpha-androstanediol, and 5 beta-androstanediol) together with an endogenous reference (5 beta-pregnanediol) were extracted from the urines and the delta(13)C/(12)C ratio of each compound was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry. The results show similar maximum delta(13)C-value variations (parts per thousand difference of delta(13)C/(12)C ratio from the isotope ratio standard) for the T metabolites and concomitant changes of the T/E ratios after administration of the first and the second dose of T. Whereas the T/E ratios as well as the androsterone, etiocholanolone and 5 alpha-androstanediol delta(13)C-values returned to the baseline 15 h after the second T administration, a decrease of the 5 beta-androstanediol delta-values could be detected for over 40 h. This suggests that measurements of 5 beta-androstanediol delta-values allow the detection of a testosterone ingestion over a longer post-administration period than other T metabolites delta(13)C-values or than the usual T/E ratio approach.
Resumo:
Cannabis cultivation in order to produce drugs is forbidden in Switzerland. Thus, law enforcement authorities regularly ask forensic laboratories to determinate cannabis plant's chemotype from seized material in order to ascertain that the plantation is legal or not. As required by the EU official analysis protocol the THC rate of cannabis is measured from the flowers at maturity. When laboratories are confronted to seedlings, they have to lead the plant to maturity, meaning a time consuming and costly procedure. This study investigated the discrimination of fibre type from drug type Cannabis seedlings by analysing the compounds found in their leaves and using chemometrics tools. 11 legal varieties allowed by the Swiss Federal Office for Agriculture and 13 illegal ones were greenhouse grown and analysed using a gas chromatograph interfaced with a mass spectrometer. Compounds that show high discrimination capabilities in the seedlings have been identified and a support vector machines (SVMs) analysis was used to classify the cannabis samples. The overall set of samples shows a classification rate above 99% with false positive rates less than 2%. This model allows then discrimination between fibre and drug type Cannabis at an early stage of growth. Therefore it is not necessary to wait plants' maturity to quantify their amount of THC in order to determine their chemotype. This procedure could be used for the control of legal (fibre type) and illegal (drug type) Cannabis production.
Resumo:
A gas chromatographic-mass spectrometric method is presented which allows the simultaneous determination of the plasma concentrations of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine after derivatization with the chiral reagent, (S)-(-)-N-trifluoroacetylprolyl chloride. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 10 to 750 ng/ml for racemic fluoxetine and norfluoxetine and of 50 to 500 ng/ml for fluvoxamine. Recoveries ranged from 50 to 66% for the three compounds. Intra- and inter-day coefficients of variation ranged from 4 to 10% for fluvoxamine and from 4 to 13% for fluoxetine and norfluoxetine. The limits of quantitation of the method were found to be 2 ng/ml for fluvoxamine and 1 ng/ml for the (R)- and (S)-enantiomers of fluoxetine and norfluoxetine, hence allowing its use for single dose pharmacokinetics. Finally, by using a steeper gradient of temperature, much shorter analysis times are obtained if one is interested in the concentrations of fluvoxamine alone.
Resumo:
Sensitive and specific methods based on gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) for the determination of levels of citalopram, desmethylcitalopram and didesmethylcitalopram in the plasma of patients treated with citalopram are presented, as well as a GC-MS procedure for the assay of the citalopram propionic acid derivative. After addition of a separate internal standard for each drug, liquid-solvent extraction is used to separate the basic compounds from the acid compounds. The demethylated amines are derivatized with trifluoroacetic anhydride, and the acid metabolite with methyl iodide. GC-MS is performed in the electron impact mode, as mass spectrometry by the (positive-ion) chemical ionization mode (methane and ammonia) appeared to be unsuitable. The limits of quantification were 1 ng/ml for citalopram and desmethylcitalopram and 2 ng/ml for the other metabolites. The correlation coefficients for the calibration curves (range 10-500 ng/ml) were > or = 0.999 for all compounds, whether determined by GC or GC-MS.
Resumo:
The aim of our study was to present a new headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable to the routine determination of hydrogen sulfide (H(2)S) concentrations in biological and gaseous samples. The primary analytical drawback of the GC/MS methods for H(2)S measurement discussed in the literature was the absence of a specific H(2)S internal standard required to perform quantification. Although a deuterated hydrogen sulfide (D(2)S) standard is currently available, this standard is not often used because this standard is expensive and is only available in the gas phase. As an alternative approach, D(2)S can be generated in situ by reacting deuterated chloride with sodium sulfide; however, this technique can lead to low recovery yield and potential isotopic fractionation. Therefore, N(2)O was chosen for use as an internal standard. This method allows precise measurements of H(2)S concentrations in biological and gaseous samples. Therefore, a full validation using accuracy profile based on the β-expectation tolerance interval is presented. Finally, this method was applied to quantify H(2)S in an actual case of H(2)S fatal intoxication.
Resumo:
Midazolam is a widely accepted probe for phenotyping cytochrome P4503A. A gas chromatography-mass spectrometry (GC-MS)-negative chemical ionization method is presented which allows measuring very low levels of midazolam (MID), 1-OH midazolam (1OHMID) and 4-OH midazolam (4OHMID), in plasma, after derivatization with the reagent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. The standard curves were linear over a working range of 20 pg/ml to 5 ng/ml for the three compounds, with the mean coefficients of correlation of the calibration curves (n = 6) being 0.999 for MID and 1OHMID, and 1.0 for 4OHMID. The mean recoveries measured at 100 pg/ml, 500 pg/ml, and 2 ng/ml, ranged from 76 to 87% for MID, from 76 to 99% for 1OHMID, from 68 to 84% for 4OHMID, and from 82 to 109% for N-ethyloxazepam (internal standard). Intra- (n = 7) and inter-day (n = 8) coefficients of variation determined at three concentrations ranged from 1 to 8% for MID, from 2 to 13% for 1OHMID and from 1 to 14% for 4OHMID. The percent theoretical concentrations (accuracy) were within +/-8% for MID and 1OHMID, within +/-9% for 4OHMID at 500 pg/ml and 2 ng/ml, and within +/-28% for 4OHMID at 100 pg/ml. The limits of quantitation were found to be 10 pg/ml for the three compounds. This method can be used for phenotyping cytochrome P4503A in humans following the administration of a very low oral dose of midazolam (75 microg), without central nervous system side-effects.
Resumo:
The role of busulfan (Bu) metabolites in the adverse events seen during hematopoietic stem cell transplantation and in drug interactions is not explored. Lack of availability of established analytical methods limits our understanding in this area. The present work describes a novel gas chromatography-tandem mass spectrometric assay for the analysis of sulfolane (Su) in plasma of patients receiving high-dose Bu. Su and Bu were extracted from a single 100 μL plasma sample by liquid-liquid extraction. Bu was separately derivatized with 2,3,5,6-tetrafluorothiophenolfluorinated agent. Mass spectrometric detection of the analytes was performed in the selected reaction monitoring mode on a triple quadrupole instrument after electronic impact ionization. Bu and Su were analyzed with separate chromatographic programs, lasting 5 min each. The assay for Su was found to be linear in the concentration range of 20-400 ng/mL. The method has satisfactory sensitivity (lower limit of quantification, 20 ng/mL) and precision (relative standard deviation less than 15 %) for all the concentrations tested with a good trueness (100 ± 5 %). This method was applied to measure Su from pediatric patients with samples collected 4 h after dose 1 (n = 46), before dose 7 (n = 56), and after dose 9 (n = 54) infusions of Bu. Su (mean ± SD) was detectable in plasma of patients 4 h after dose 1, and higher levels were observed after dose 9 (249.9 ± 123.4 ng/mL). This method may be used in clinical studies investigating the role of Su on adverse events and drug interactions associated with Bu therapy.
Resumo:
A gas chromatographic-mass spectrometric (GC-MS) method has been developed, for the determination of trimipramine (TRI), desmethyltrimipramine (DTRI), didesmethyltrimipramine (DDTRI), 2-hydroxytrimipramine (2-OH-TRI) and 2-hydroxydesmethyltrimipramine (2-OH-DTRI). The method includes two derivatization steps with trifluoroacetic acid anhydride and N-methyl-N-(tert.-butyldimethyl silyl)trifluoroacetamide and the use of an SE-54 capillary silica column. The limits of quantitation were found to be 2 ng/ml for DTRI and 4 ng/ml for all other substances. Besides, methods have been optimized for the hydrolysis of the glucuronic acid conjugated metabolites. This specific detection method is useful, as polymedication is a usual practice in clinical situations, and its sensitivity allows its use for single-dose pharmacokinetic studies.
Resumo:
Agricultural workers are exposed to folpet, but biomonitoring data are limited. Phthalimide (PI), phthalamic acid (PAA), and phthalic acid (PA) are the ring metabolites of this fungicide according to animal studies, but they have not yet been measured in human urine as metabolites of folpet, only PA as a metabolite of phthalates. The objective of this study was thus to develop a reliable gas chromatography-tandem mass spectrometry (GC-MS) method to quantify the sum of PI, PAA, and PA ring-metabolites of folpet in human urine. Briefly, the method consisted of adding p-methylhippuric acid as an internal standard, performing an acid hydrolysis at 100 °C to convert ring-metabolites into PA, purifying samples by ethyl acetate extraction, and derivatizing with N,O-bis(trimethylsilyl)trifluoro acetamide prior to GC-MS analysis. The method had a detection limit of 60.2 nmol/L (10 ng/mL); it was found to be accurate (mean recovery, 97%), precise (inter- and intra-day percentage relative standard deviations <13%), and with a good linearity (R (2) > 0.98). Validation was conducted using unexposed peoples urine spiked at concentrations ranging from 4.0 to 16.1 μmol/L, along with urine samples of volunteers dosed with folpet, and of exposed workers. The method proved to be (1) suitable and accurate to determine the kinetic profile of PA equivalents in the urine of volunteers orally and dermally administered folpet and (2) relevant for the biomonitoring of exposure in workers.
Resumo:
A simple method determining airborne monoethanolamine has been developed. Monoethanolamine determination has traditionally been difficult due to analytical separation problems. Even in recent sophisticated methods, this difficulty remains as the major issue often resulting in time-consuming sample preparations. Impregnated glass fiber filters were used for sampling. Desorption of monoethanolamine was followed by capillary GC analysis and nitrogen phosphorous selective detection. Separation was achieved using a specific column for monoethanolamines (35% diphenyl and 65% dimethyl polysiloxane). The internal standard was quinoline. Derivatization steps were not needed. The calibration range was 0.5-80 μg/mL with a good correlation (R(2) = 0.996). Averaged overall precisions and accuracies were 4.8% and -7.8% for intraday (n = 30), and 10.5% and -5.9% for interday (n = 72). Mean recovery from spiked filters was 92.8% for the intraday variation, and 94.1% for the interday variation. Monoethanolamine on stored spiked filters was stable for at least 4 weeks at 5°C. This newly developed method was used among professional cleaners and air concentrations (n = 4) were 0.42 and 0.17 mg/m(3) for personal and 0.23 and 0.43 mg/m(3) for stationary measurements. The monoethanolamine air concentration method described here was simple, sensitive, and convenient both in terms of sampling and analytical analysis.
Resumo:
Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.
Resumo:
Propane can be responsible for several types of lethal intoxication and explosions. Quantifying it would be very helpful to determine in some cases the cause of death. Some gas chromatography-mass spectrometry (GC-MS) methods of propane measurements do already exist. The main drawback of these GC-MS methods described in the literature is the absence of a specific propane internal standard necessary for accurate quantitative analysis. The main outcome of the following study was to provide an innovative Headspace-GC-MS method (HS-GC-MS) applicable to the routine determination of propane concentration in forensic toxicology laboratories. To date, no stable isotope of propane is commercially available. The development of an in situ generation of standards is thus presented. An internal-labeled standard gas (C3DH7) is generated in situ by the stoichiometric formation of propane by the reaction of deuterated water (D2O) with Grignard reagent propylmagnesium chloride (C3H7MgCl). The method aims to use this internal standard to quantify propane concentrations and, therefore, to obtain precise measurements. Consequently, a complete validation with an accuracy profile according to two different guidelines, the French Society of Pharmaceutical Sciences and Techniques (SFSTP) and the Gesellschaft für toxikologische und Forensische Chemie (GTFCh), is presented.
Resumo:
Recent studies show that the composition of fingerprint residue varies significantly from the same donor as well as between donors. This variability is a major drawback in latent print dating issues. This study aimed, therefore, at the definition of a parameter that is less variable from print to print, using a ratio of peak area of a target compound degrading over time divided by the summed area of peaks of more stable compounds also found in latent print residues.Gas chromatography-mass spectrometry (GC/MS) analysis of the initial lipid composition of latent prints identifies four main classes of compounds that can be used in the definition of an aging parameter: fatty acids, sterols, sterol precursors, and wax esters (WEs). Although the entities composing the first three groups are quite well known, those composing WEs are poorly reported. Therefore, the first step of the present work was to identify WE compounds present in latent print residues deposited by different donors. Of 29 WEs recorded in the chromatograms, seven were observed in the majority of samples.The identified WE compounds were subsequently used in the definition of ratios in combination with squalene and cholesterol to reduce the variability of the initial composition between latent print residues from different persons and more particularly from the same person. Finally, the influence of a latent print enhancement process on the initial composition was studied by analyzing traces after treatment with magnetic powder, 1,2-indanedione, and cyanoacrylate.