114 resultados para Chromatography, high pressure Liquid
Resumo:
The capabilities of a high-resolution (HR), accurate mass spectrometer (Exactive-MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50,000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive-MS was compared with that of a triple quadrupole mass spectrometer (TQ-MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole-N-oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR-MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR-MS offers several benefits over TQ-MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR-MS delivers comparable results to TQ-MS in routine quantitative drug analyses. Considering the advantages of HR-MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed.
Resumo:
The mechanism of CD8 cooperation with the TCR in antigen recognition was studied on live T cells. Fluorescence correlation measurements yielded evidence of the presence of two TCR and CD8 subpopulations with different lateral diffusion rate constants. Independently, evidence for two subpopulations was derived from the experimentally observed two distinct association phases of cognate peptide bound to class I MHC (pMHC) tetramers and the T cells. The fast phase rate constant ((1.7 +/- 0.2) x 10(5) M(-1) s(-1)) was independent of examined cell type or MHC-bound peptides' structure. Its value was much faster than that of the association of soluble pMHC and TCR ((7.0 +/- 0.3) x 10(3) M(-1) s(-1)), and close to that of the association of soluble pMHC with CD8 ((1-2) x 10(5) M(-1) s(-1)). The fast binding phase disappeared when CD8-pMHC interaction was blocked by a CD8-specific mAb. The latter rate constant was slowed down approximately 10-fold after cells treatment with methyl-beta-cyclodextrin. These results suggest that the most efficient pMHC-cell association route corresponds to a fast tetramer binding to a colocalized CD8-TCR subpopulation, which apparently resides within membrane rafts: the reaction starts by pMHC association with the CD8. This markedly faster step significantly increases the probability of pMHC-TCR encounters and thereby promotes pMHC association with CD8-proximal TCR. The slow binding phase is assigned to pMHC association with a noncolocalized CD8-TCR subpopulation. Taken together with results of cytotoxicity assays, our data suggest that the colocalized, raft-associated CD8-TCR subpopulation is the one capable of inducing T-cell activation.
Resumo:
Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.
Resumo:
BACKGROUND: An LC-MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. RESULTS: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. CONCLUSION: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Resumo:
BACKGROUND: Photodynamic therapy (PDT) at low drug-light conditions can enhance the transport of intravenously injected macromolecular therapeutics through the tumor vasculature. Here we determined the impact of PDT on the distribution of liposomal doxorubicin (Liporubicin™) administered by isolated lung perfusion (ILP) in sarcomas grown on rodent lungs. METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the left lung of Fischer rats. Treatment schemes consisted in ILP alone (400 μg of Liporubicin), low-dose (0.0625 mg/kg Visudyne®, 10 J/cm(2) and 35 mW/cm(2)) and high-dose left lung PDT (0.125 mg/kg Visudyne, 10 J/cm(2) and 35 mW/cm(2)) followed by ILP (400 μg of Liporubicin). The uptake and distribution of Liporubicin in tumor and lung tissues were determined by high-performance liquid chromatography and fluorescence microscopy in each group. RESULTS: Low-dose PDT significantly improved the distribution of Liporubicin in tumors compared to high-dose PDT (p < 0.05) and ILP alone (p < 0.05). However, both PDT pretreatments did not result in a higher overall drug uptake in tumors or a higher tumor-to-lung drug ratio compared to ILP alone. CONCLUSIONS: Intraoperative low-dose Visudyne-mediated PDT enhances liposomal doxorubicin distribution administered by ILP in sarcomas grown on rodent lungs which is predicted to improve tumor control by ILP.
Resumo:
Surface- or biosynthetically labeled Lyt-2/3 antigens were isolated from cell lysates by immunoprecipitation and affinity chromatography with a monoclonal antibody. Tryptic digests of the individual subunits of 37,000, 32,000 and 28,000 apparent mol. wts were analysed by reverse-phase high-performance liquid chromatography and by two-dimensional peptide mapping. The results indicate that the 37,000 and 32,000 mol. wt components are structurally very similar whereas the 28,000 mol. wt component appears as a different molecule.
Resumo:
A two-step high-performance liquid chromatography method is described, using a CN column and an alpha 1-acid glycoprotein column, which allows the measurement of the enantiomers of the hydroxy metabolites of trimipramine in plasma of trimipramine-treated patients. Of the four patients analyzed, three showed approximately equimolar concentrations of the (D)- and (L)-enantiomers of the hydroxy metabolites (2-hydroxy-trimipramine and 2-hydroxy desmethyltrimipramine), and one was found to have roughly twice as much of the (L)-form and of the (D)-form of 2-hydroxy trimipramine and 2-hydroxy desmethyltrimipramine. From the data available on the pharmacological effects of the enantiomers of trimipramine, it is postulated that this interindividual variability in its pharmacokinetics is another factor that could contribute to the interindividual variability in its pharmacodynamics.
Resumo:
BACKGROUND:HIV-1-infected patients vary considerably by their response to antiretroviral treatment, drug concentrations in plasma, toxic events, and rate of immune recovery. This variability could have a genetic basis. We did a pharmacogenetics study to analyse the association between response to antiretroviral treatment and allelic variants of several genes. METHODS:In 123 patients, we did PCR analyses of the gene for the multidrug-resistance transporter (MDR1), which codes for P-glycoprotein, of genes coding for isoenzymes of cytochrome P450, CYP3A4, CYP3A5, CYP2D6, and CYP2C19, and of the gene for the chemokine receptor CCR5. We measured concentrations in plasma of the antiretroviral agents efavirenz and nelfinavir by high-performance liquid-chromatography, and measured levels of P-glycoprotein expression, CD4-cell count, and HIV-1 viraemia. FINDINGS: Median drug concentrations in patients with the MDR1 3435 TT, CT, and CC genotypes were at the 30th, 50th, and 75th percentiles, respectively (p=0.0001). In patients with CYP2D6 extensive-metaboliser or poor-metaboliser alleles, median drug concentrations were at percentiles 45 and 62.5, respectively (p=0.04). Patients with the MDR1 TT genotype 6 months after starting treatment had a greater rise in CD4-cell count (257 cells/microL) than patients with the CT (165 cells/microL) and CC (121 cells/microL) genotype (p=0.0048), and the best recovery of naïve CD4-cells. INTERPRETATION:The polymorphism MDR1 3435 C/T predicts immune recovery after initiation of antiretroviral treatment. This finding suggests that P-glycoprotein has an important role in admittance of antiretroviral drugs to restricted compartments in vivo.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
METHODS: Twenty-two patients receiving (R)-methadone maintenance treatment were switched to a double dose of (R,S)-methadone: blood samples were collected before and after the change, and the concentrations of the enantiomers were measured. In the second period, during racemic methadone treatment, important interindividual variability in the stereoselective disposition of the enantiomers of methadone was measured, with (R)/(S) ratios ranging from 0.63 to 2.40. This point should be taken into account particularly with respect to therapeutic drug monitoring of racemic methadone. RESULTS: A significant decrease P < 0.005 in the mean serum concentration/dose ratios of the active (R)-enantiomer before and after the change was measured (mean 3.97 and 3.33). CONCLUSION: Although of small amplitude (16%), this decrease confirms previously described adaptive changes in methadone pharmacokinetics during racemic methadone maintenance treatment and may necessitate, in some patients, a dose adjustment.
Resumo:
Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.
Resumo:
Carbon isotope ratio of androgens in urine specimens is routinely determined to exclude an abuse of testosterone or testosterone prohormones by athletes. Increasing application of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) in the last years for target and systematic investigations on samples has resulted in the demand for rapid sample throughput as well as high selectivity in the extraction process particularly in the case of conspicuous samples. For that purpose, we present herein the complimentary use of an SPE-based assay and an HPLC fractionation method as a two-stage strategy for the isolation of testosterone metabolites and endogenous reference compounds prior to GC/C/IRMS analyses. Assays validation demonstrated acceptable performance in terms of intermediate precision (range: 0.1-0.4 per thousand) and Bland-Altman analyses revealed no significant bias (0.2 per thousand). For further validation of this two-stage analyses strategy, all the specimens (n=124) collected during a major sport event were processed.
Resumo:
INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Resumo:
PURPOSE: The objective of this study was to evaluate the long-term safety and pharmacokinetic profile of a dexamethasone-loaded poly-epsilon-caprolactone (PCL) intravitreous implant. METHODS: The PCL devices were prepared by compression and were inserted into the vitreous of pigmented rabbits. At different time points, vitreous samples were retrieved, and dexamethasone concentration was analyzed by high-performance liquid chromatography. The biodegradation of the implants was evaluated by scanning electron microscopy, and the dexamethasone remaining was evaluated at the end of follow-up. Clinical and histologic examinations were performed to evaluate the implant's tolerance. RESULTS: The PCL implant allows for a controlled and prolonged delivery of dexamethasone in rabbits eyes since it released the drug within the therapeutic range for at least 55 weeks. At 55 weeks approximately 79% of the drug was still present in the implant. Biodegradation study showed that PCL implants degradation is very slow. Clinical and histologic observations showed that the devices were very well tolerated in the rabbit eye. CONCLUSIONS: This study demonstrates the feasibility and tolerance of intravitreous PCL drug delivery systems, which can offer a wide range of applications for intraocular drug delivery because of their controlled and prolonged release over months or even years.
Resumo:
The peptidoglycan of Gram-positive bacteria is known to trigger cytokine release from peripheral blood mononuclear cells (PBMCs). However, it requires 100-1000 times more Gram-positive peptidoglycan than Gram-negative lipopolysaccharide to release the same amounts of cytokines from target cells. Thus, either peptidoglycan is poorly active or only part of it is required for PBMC activation. To test this hypothesis, purified Streptococcus pneumoniae walls were digested with their major autolysin N-acetylmuramoyl-L-alanine amidase, and/or muramidase. Solubilized walls were separated by reverse phase high pressure chromatography. Individual fractions were tested for their PBMC-stimulating activity, and their composition was determined. Soluble components had a Mr between 600 and 1500. These primarily comprised stem peptides cross-linked to various extents. Simple stem peptides (Mr <750) were 10-fold less active than undigested peptidoglycan. In contrast, tripeptides (Mr >1000) were >/=100-fold more potent than the native material. One dipeptide (inactive) and two tripeptides (active) were confirmed by post-source decay analysis. Complex branched peptides represented </=2% of the total material, but their activity (w/w) was almost equal to that of LPS. This is the first observation suggesting that peptidoglycan stem peptides carry high tumor necrosis factor-stimulating activity. These types of structures are conserved among Gram-positive bacteria and will provide new material to help elucidate the mechanism of peptidoglycan-induced inflammation.