367 resultados para Characteristic function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les interactions épithélio-mésenchymateuses jouent un rôle important dans le contrôle du développement normal de la peau, son homéostasie et sa tumorigenèse. Les fibroblastes dermiques (DFs) représentent la catégorie cellulaire la plus abondante dans le stroma et leur rôle est de plus en plus considéré. En ce qui concerne particulièrement la tumorigenèse, des facteurs diffusibles produits par les fibroblastes entourant les tumeurs épithéliales, appelés 'fibroblastes associés au cancer (CAF)', interagissent au niveau de l'inflammation impliquée directement ou indirectement dans la signalisation paracrine, entre le stroma et les cellules épiéliales cancéreuses. Le risque de cancer de la peau augmente de façon exponentielle avec l'âge. Comme un lien probable entre les deux, la sénescence des fibroblastes résulte de la production du sécrétome favorisant la sénescence (SMS), un groupe de facteurs diffusibles induisant une stimulation paracrine de la croissance, l'inflammation et le remodelage de la matrice. De façon fort intéressante, l'induction de ces gènes est aussi une caractéristique des CAFs. Cependant, le lien entre les deux événements cellulaires sénescence et activation des CAFs reste en grande partie inexploré. L'ATF3 (Activating Transcription Factor 3) est un facteur de transcription induit en réponse au stress, dont les fonctions sont hautement spécifiques du type cellulaire. Bien qu'il ait été découvert dans notre laboratoire en tant que promoteur de tumeurs dans les kératinocytes, ses fonctions biologique et biochimique dans le derme n'ont pas encore été étudiées. Récemment, nous avons constaté que, chez la souris, l'abrogation de la voie de signalisation de Notch/CSL dans les DFs, induisait la formation de tumeurs kératinocytaires multifocales. Ces dernières proviennent de la cancérisation en domaine, un phénomène associé à une atrophie du stroma, des altérations de la matrice et de l'inflammation. D'autres études ont montré que CSL agissait comme un régulateur négatif de gènes impliqués dans sénescence des DFs et dans l'activation des CAFs. Ici, nous montrons que la suppression ou l'atténuation de l'expression de ATF3 dans les DFs induit la sénescence et l'expression des gènes liés aux CAFs, de façon similaire à celle déclenchée par la perte de CSL, tandis que la surexpression de ATF3 supprime ces changements. Nous émettons l'hypothèse que ATF3 joue un rôle suppresseur dans l'activation des CAFs et dans la progression des tumeurs kératinocytaires, en surmontant les conséquences de l'abrogation de la voie de signalisation Notch/CSL. En concordance avec cette hypothèse, nous avons constaté que la perte de ATF3 dans les DFs favorisait la tumorigénicité des kératinocytes via le contrôle négatif de cytokines, des enzymes de la matrice de remodelage et de protéines associées au cancer, peut-être par liaison directe des effecteurs de la voie Notch/CSL : IL6 et les gènes Hes. Enfin, dans les échantillons cliniques humains, le stroma sous-jacent aux lésions précancéreuses de kératoses actiniques montre une diminution significative de l'expression de ATF3 par rapport au stroma jouxtant la peau normale. La restauration de l'expression de ATF3 pourrait être utilisée comme un outil thérapeutique en recherche translationnelle pour prévenir ou réprimer le processus de cancérisation en domaine. - Epithelial-mesenchymal interactions play an important role in control of normal skin development, homeostasis and tumorigenesis. The role of dermal fibroblasts (DFs) as the most abundant cell type in stroma is increasingly appreciated. Especially during tumorigenesis, fibroblasts surrounding epithelial tumors, called Cancer Associated Fibroblasts (CAFs), produce diffusible factors (growth factors, inflammatory cytokines, chemokines and enzymes, and matrix metalloproteinases) that mediate inflammation either directly or indirectly through paracrine signaling between stroma and epithelial cancer cells. The risk of skin cancer increases exponentially with age. As a likely link between the two, senescence of fibroblasts results in production of the senescence-messaging-secretome (SMS), a panel of diffusible factors inducing paracrine growth stimulation, inflammation, and matrix remodeling. Interestingly, induction of these genes is also a characteristic of Cancer Associated Fibroblasts (CAFs). However, the link between the two cellular events, senescence and CAF activation is largely unexplored. ATF3 is a key stress response transcription factor with highly cell type specific functions, which has been discovered as a tumor promoter in keratinocytes in our lab. However, the biological and biochemical function of ATF3 in the dermal compartment of the skin has not been studied yet. Recently, we found that compromised Notch/CSL signaling in dermal fibroblasts (DFs) in mice is a primary cause of multifocal keratinocyte tumors called field cancerization associated with stromal atrophy, matrix alterations and inflammation. Further studies showed that CSL functions as a negative regulator of genes involved in DFs senescence and CAF activation. Here, we show that deletion or silencing of the ATF3 gene in DFs activates senescence and CAF-related gene expression similar to that triggered by loss of CSL, while increased ATF3 suppresses these changes. We hypothesize that ATF3 plays a suppressing role in CAF activation and keratinocyte tumor progression, overcoming the consequences of compromised Notch/CSL signaling. In support of this hypothesis, we found that loss of ATF3 in DFs promotes tumorigenic behavior of keratinocytes via negative control of cytokines, matrix-remodeling enzymes and cancer-associated proteins, possibly through direct binding to Notch/CSL targets, IL6 and Hes genes. On the other hand, in human clinical samples, stromal fields underlying premalignant actinic keratosis lesions showed significantly decreased ATF3 expression relative to stroma of flanking normal skin. Restoration of ATF3, which is lost in cancer development, may be used as a therapeutic tool for translational research to prevent or suppress the field cancerization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the association of renal impairment on functional outcome and complications in stroke patients treated with IV thrombolysis (IVT). METHODS: In this observational study, we compared the estimated glomerular filtration rate (GFR) with poor 3-month outcome (modified Rankin Scale scores 3-6), death, and symptomatic intracranial hemorrhage (sICH) based on the criteria of the European Cooperative Acute Stroke Study II trial. Unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Patients without IVT treatment served as a comparison group. RESULTS: Among 4,780 IVT-treated patients, 1,217 (25.5%) had a low GFR (<60 mL/min/1.73 m(2)). A GFR decrease by 10 mL/min/1.73 m(2) increased the risk of poor outcome (OR [95% CI]): (ORunadjusted 1.20 [1.17-1.24]; ORadjusted 1.05 [1.01-1.09]), death (ORunadjusted 1.33 [1.28-1.38]; ORadjusted 1.18 [1.11-1.249]), and sICH (ORunadjusted 1.15 [1.01-1.22]; ORadjusted 1.11 [1.04-1.20]). Low GFR was independently associated with poor 3-month outcome (ORadjusted 1.32 [1.10-1.58]), death (ORadjusted 1.73 [1.39-2.14]), and sICH (ORadjusted 1.64 [1.21-2.23]) compared with normal GFR (60-120 mL/min/1.73 m(2)). Low GFR (ORadjusted 1.64 [1.21-2.23]) and stroke severity (ORadjusted 1.05 [1.03-1.07]) independently determined sICH. Compared with patients who did not receive IVT, treatment with IVT in patients with low GFR was associated with poor outcome (ORadjusted 1.79 [1.41-2.25]), and with favorable outcome in those with normal GFR (ORadjusted 0.77 [0.63-0.94]). CONCLUSION: Renal function significantly modified outcome and complication rates in IVT-treated stroke patients. Lower GFR might be a better risk indicator for sICH than age. A decrease of GFR by 10 mL/min/1.73 m(2) seems to have a similar impact on the risk of death or sICH as a 1-point-higher NIH Stroke Scale score measuring stroke severity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some striking similarities and some differences between the seismic reflection sections recorded across the fold and thrust belts of the southeast Canadian Cordillera, Quebec-Maine Appalachians and Swiss Alps. In the fold and thrust belts of all three mountain ranges, seismic reflection surveys have yielded high-quality images of. (1) nappes (thin thrust sheets) stacked on top of ancient continental margins; (2) ramp anticlines in the hanging walls of faults that have ramp-flat or listric geometries; (3) back thrusts and back folds that developed during the terminal phases of orogeny; and (4) tectonic wedges and regional decollements. A principal result of the Cordilleran and Appalachian deep crustal studies has been the recognition of master decollements along which continental margin strata have been transported long distances, whereas a principal result of the Swiss Alpine deep crustal program has been the identification of the Adriatic indenter, a crustal-scale wedge that caused delamination of the European lithosphere. Significant crustal roots are observed beneath the fold and thrust belts of the Alps, southeast Canadian Cordillera and parts of the southern Appalachians, but such structures beneath the northern Appalachians have probably been removed by post-orogenic collapse and/or crustal attenuation associated with the Mesozoic opening of the Atlantic Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic β-cells play a central role in glucose homeostasis by tightly regulating insulin release according to the organism's demand. Impairment of β-cell function due to hostile environment, such as hyperglycaemia and hyperlipidaemia, or due to autoimmune destruction of β-cells, results in diabetes onset. Both environmental factors and genetic predisposition are known to be involved in the development of the disease, but the exact mechanisms leading to β-cell dysfunction and death remain to be characterized. Non-coding RNA molecules, such as microRNAs (miRNAs), have been suggested to be necessary for proper β-cell development and function. The present review aims at summarizing the most recent findings about the role of non-coding RNAs in the control of β-cell functions and their involvement in diabetes. We will also provide a perspective view of the future research directions in the field of non-coding RNAs. In particular, we will discuss the implications for diabetes research of the discovery of a new communication mechanism based on cell-to-cell miRNA transfer. Moreover, we will highlight the emerging interconnections between miRNAs and epigenetics and the possible role of long non-coding RNAs in the control of β-cell activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.