281 resultados para Cellule pancréatique beta


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'insuline est une hormone qui diminue la concentration de sucre dans le sang et qui est produite par la cellule β du pancréas. Un défaut de production de cette hormone est une des causes principales du diabète. Cette perte de production d'insuline est la conséquence à la fois, de la réduction du nombre de cellules β et du mauvais fonctionnement des cellules β restantes. L'inflammation, en activant la voie de signalisation «c-Jun N-terminal Kinase» (JNK) contribue au déclin de ces cellules. Cette voie de signalisation est activée par des protéines telles que des kinases qui reçoivent le signal de stress. Dans ce travail de thèse nous nous sommes intéressés à étudier le rôle de «Dual leucine zipper bearing kinase» (DLK) comme protéine capable de relayer le stress inflammatoire vers l'activation de la voie JNK dans les cellules β-pancréatiques. Nous montrons que DLK est présente dans les cellules β-pancréatiques et qu'elle agit effectivement comme un activateur de la voie de signalisation de JNK. En outre, DLK joue un rôle clé dans le contrôle de l'expression de l'insuline, de la sécrétion de l'insuline en réponse au glucose et au maintien de la survie des cellules β. Si l'expression de cette protéine diminue, la cellule produit moins d'insuline et sera plus sensible à la mort en réponse au stress inflammatoire. A l'inverse si l'expression de DLK est augmentée, la cellule β produit et secrète plus d'insuline. Des variations de l'expression de DLK sont par ailleurs, associées à l'état de santé de la cellule β. Chez la ratte en gestation ou la souris obèse, dans lesquelles la cellule β produit plus d'insuline, l'expression de DLK est augmentée. En revanche dans les cellules β des patients diabétiques, l'expression de DLK est diminuée par rapport aux cellules non malades. En résumé, DLK est nécessaire pour le bon fonctionnement de la cellule β-pancréatique et son expression corrèle avec le degré de santé des cellules, faisant que cette protéine pourrait être une cible thérapeutique potentiel. Les cellules β-pancréatiques ont la capacité de réguler la sécrétion d'insuline en s'adaptant précisément au stimulus et à la glycémie. La fonction de la cellule β est cruciale dans l'homéostasie du glucose puisque sa dysfonction et sa mort mènent au développement des diabètes de type 1 et 2. De nombreuses études suggèrent que l'inflammation pourrait avoir un rôle dans la dysfonction et la destruction de ces cellules dans le diabète de type 2. L'excès chronique de cytokines proinflammatoires accélère le dysfonctionnement de la cellule β pancréatique par un mécanisme qui implique la voie de signalisation «c-Jun N-terminal Kinase» (JNK). L'activation de cette voie est organisée par des protéines d'échafaudages. Elle se fait par trois étapes successives de phosphorylation impliquant une «Mitogen Activated Protein Kinase Kinase Kinase» (MAP3K), une MAP2K et JNK. Dans ce travail de thèse nous montrons l'expression abondante et spécifique de la MAP3K «Dual Leucine Zipper Bearing Kinase» (DLK) dans les cellules β pancréatiques. Cela est la conséquence de l'absence du répresseur transcriptionnel «Repressor Element 1 Silencing Transcription». Nous montrons également que DLK régule l'activation de JNK et qu'il s'avère nécessaire pour la fonction et la survie de la cellule β pancréatique par un mécanisme impliquant le facteur de transcription PDX-1. L'invalidation de l'expression de DLK diminue l'expression de l'insuline et potentialise l'apoptose induite par des cytokines proinflammatoires. A l'inverse, la surexpression de DLK augmente l'expression et la sécrétion d'insuline induites par le glucose. Par conséquent des niveaux d'expression appropriés de DLK sont déterminants pour la fonction et la survie de la cellule β pancréatique. L'obésité et la grossesse sont caractérisées par une hyperinsulinémie qui résulte d'une augmentation de la production et de la sécrétion de l'insuline. L'expression de DLK est augmentée dans des îlots de rattes gestantes et des souris obèses comparés à leurs contrôles respectifs. A l'inverse, dans des sujets diabétiques, l'expression de DLK est diminuée. Ensemble ces résultats montrent l'importance de DLK dans l'adaptation des îlots par un mécanisme qui pourrait impliquer la voie de signalisation de JNK. Des défauts dans cette voie régulée par DLK pourraient contribuer au dysfonctionnement et la mort de la cellule β pancréatique et par conséquent au développement du diabète. L'étude détaillée du mécanisme par lequel DLK active la voie de signalisation JNK et régule la fonction de la cellule β pancréatique pourrait ouvrir la voie des nouvelles thérapies ciblant l'amélioration de la fonction de la cellule β dans le diabète. - Pancreatic β-cells are evidently plastic in their ability to regulate insulin secretion. The quantity of insulin released by these cells varies according to the stimulus, and the prevailing glucose concentration, β-cell function is pivotal in glucose homeostasis, as their dysfunction, and death can lead to development of type 1 and type 2 diabetes. There are numerous reports so far underlying the role of inflammation in dysfunction, and destruction of β-cells, in both type 1 and type 2 diabetes. Chronic excess of pro¬inflammatory cytokines promotes a β-cell decline, via induction of the c-Jun N-terminal Kinase (JNK) pathway. The activation of the JNK pathway is organized by a scaffold protein-mediated module in which, a three-step phosphorylation cascade occurs. The latter includes, Mitogen activated protein kinase kinase kinase (MAP3K), MAP2K and JNK. In this thesis, we unveil that the MAP3K Dual Leucine Zipper Bearing Kinase (DLK) is selectively, and highly expressed in pancreatic β-cells, as the result from the absence of the transcriptional repressor named, Repressor Element 1 Silencing Transcription (REST). We show that DLK regulates activation of JNK, and is required for β-cell function and survival by modulating the PDX-1 transcription factor. Silencing of DLK expression diminishes insulin expression, and potentiated cytokine-mediated apoptosis. Conversely, overexpression of DLK increased insulin expression, and glucose-induced insulin secretion. Therefore, an appropriate level of DLK is critical for β-cell function and survival. Obesity and pregnancy are characterized by hyperinsulinemia resulting from an increased production and secretion of insulin. In isolated islets of pregnant rats, and obese mice, the expression of DLK was elevated when compared to their respective controls. However, decreased expression of DLK was observed in islets of individuals with diabetes. Taken together, we highlight the importance of DLK in islet adaptation, and describe a mechanism that may involve the JNK signaling. Deficiency in the JNK pathway regulated by DLK may contribute to β-cell failure and death, and thereby development of diabetes. Unraveling the mechanism whereby DLK activates the JNK pathway, and β-cell function, may pave the way for the design of novel therapies, aiming to improve β-cell function and survival in diabetes in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 1 beta (IL-1 beta) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by transcription of Il1b dependent on the transcription factor NF-kappaB and subsequent processing of pro-IL-1 beta by an inflammasome. However, the sensors and mechanisms that facilitate RNA virus-induced production of IL-1 beta are not well defined. Here we report a dual role for the RNA helicase RIG-I in RNA virus-induced proinflammatory responses. Whereas RIG-I-mediated activation of NF-kappaB required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like receptor protein NLRP3. Our results identify the CARD9-Bcl-10 module as an essential component of the RIG-I-dependent proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms. Database URL: http://eurodia.vital-it.ch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To present the light and electron microscopic findings of a unique corneal dystrophy never before described in a German family carrying the Gly623Asp Mutation of the TGFBI gene with late clinical onset. DESIGN: Experimental study. PARTICIPANTS: Four affected and 6 nonaffected family members. METHODS: Slit-lamp examination, photographic documentation, and isolation of genomic DNA from peripheral blood leucocytes obtained from each family member examined. Exons 3, 4, 5, and 11 to 14 of the TGFBI gene were amplified and sequenced in these family members. Five corneal buttons of 3 affected siblings were excised at the time of penetrating keratoplasty. Light and electron microscopic examination were performed including immunohistochemistry with antibodies against keratoepithelin (KE) 2 and 15. MAIN OUTCOME MEASURES: Clinical and histologic characteristics of corneal opacification in affected patients and presence of coding region changes in the TGFBI gene. RESULTS: The specimens showed destructive changes in Bowman's layer and the adjacent stroma. Patchy Congo red-positive amyloid deposits were found within the epithelium in 1 cornea, in Bowman's layer and in the anterior stroma of all specimens also showing KE2, but not KE15, immunostaining. Electron microscopy revealed deposits mainly located in the anterior stroma and Bowman's layer and in small amounts in the basal area of some epithelial cells. The destroyed areas were strongly Alcian blue-positive, the Masson Trichrome stain proved mainly negative for the deposits. All affected but none of the unaffected family members had a heterozygous missense mutation in exon 14 of the TGFBI gene (G-->A transition at nucleotide 1915) replacing glycin by aspartic acid amino acid (Gly623Asp) at position 623 of the KE protein. CONCLUSIONS: In contrast with the patient carrying the Gly623Asp mutation of the TGFBI gene described by Afshari et al, our cases presented with Salzmann's nodular degeneration-like clinical features and their specimens contained KE2-positive amyloid. The reason for this now "meeting the expectation histologic phenotype" is unclear. The histologic findings emphasize that this is a unique corneal dystrophy, which shares no clinical characteristics with Reis-Bücklers' dystrophy and should be treated as a distinct entity. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commitment of the alpha beta and gamma delta T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCR gamma delta-transgenic or TCR beta knockout mice, both of which are unable to generate TCR alpha beta-positive T cells, develop phenotypically alpha beta-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCR beta protein, the gamma delta TCR can promote the development of alpha beta-like thymocytes, which, however, do not expand significantly and do not mature into gamma delta T cells. These results show that commitment to the alpha beta lineage can be determined independently of the isotype of the TCR, and suggest that alpha beta versus gamma delta T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCR gamma and delta gene rearrangements on alpha beta T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A panel of monoclonal antibodies specific of alpha-tubulin (TU-01, TU-09) and beta-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU-13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of beta-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of beta-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of beta-tubulin by interacting protein(s) in dendrites and axons.