75 resultados para Carpathian Chain
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.
Resumo:
Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.
Resumo:
INTRODUCTION: The EORTC 22922/10925 trial investigated the potential survival benefit and toxicity of elective irradiation of the internal mammary and medial supraclavicular (IM-MS) nodes Accrual completed in January 2004 and first results are expected in 2012. We present the toxicity reported until year 3 after treatment. PATIENTS AND METHODS: At each visit, toxicity was reported but severity was not graded routinely. Toxicity rates and performance status (PS) changes at three years were compared by chi(2) tests and logistic regression models in all the 3,866 of 4,004 patients eligible to the trial who received the allocated treatment. RESULTS: Only lung (fibrosis; dyspnoea; pneumonitis; any lung toxicities) (4.3% vs. 1.3%; p < 0.0001) but not cardiac toxicity (0.3% vs. 0.4%; p = 0.55) significantly increased with IM-MS treatment. No significant worsening of the PS was observed (p = 0.79), suggesting that treatment-related toxicity does not impair patient's daily activities. CONCLUSIONS: IM-MS irradiation seems well tolerated and does not significantly impair WHO PS at three years. A follow-up period of at least 10 years is needed to determine whether cardiac toxicity is increased after radiotherapy.
Resumo:
La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.
Resumo:
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Resumo:
We have reported earlier that purified preparations of sheep fetal hemoglobin, but not adult hemoglobin, in concert with non-stimulatory doses of lipopolysaccharide (LPS) (lipid A), act cooperatively to regulate in vitro production of a number of cytokines, including TNFalpha, TGFbeta and IL-6 from murine and human leukocytes. Following in vivo treatment of mice with the same combination of hemoglobin and LPS, harvested spleen or peritoneal cells showed a similar augmented capacity to release these cytokines into culture supernatants. We report below that genetically cloned gamma-chain of human or sheep fetal hemoglobin, but not cloned alpha- or beta-chains, can produce this cooperative effect, as indeed can HPLC purified, heme-free, gamma-chains derived from cord blood fetal hemoglobin, and that purified haptoglobin completely abolishes the cooperative interaction.
Resumo:
The diagnosis of multiple myeloma is often suggested by disturbances found in routine laboratory tests such as sedimentation rate, electrophoresis of serum proteins and search for proteinuria. In light chain myeloma these tests are nonspecific and therefore misleading. We present 8 cases of light chain myeloma and discuss the diagnosis of multiple myeloma with its associated pitfalls.
Resumo:
The 1:10,000 scale mapping of the southern part of the Aggtelek Plateau (Western Carpathians, Silica Nappe, NE Hungary) and the study of five sections revealed two Middle Triassic reef bodies. In the late Pelsonian the uniform Steinalm Platform was drowned and dissected due to the Reifling Event. A connection with the open sea was established, indicated by the appearance of gladigondolellid conodonts from the early Illyrian. Basins and highs were formed. In the NW part of the studied area lower - middle? Illyrian basinal carbonates were followed by a platform margin reef (early? - middle Illyrian; reef stage 1) developed on a morphological high. This is the oldest known Triassic platform margin reef within the Alpine-Carpathian region. The reef association is dominated by sphinctozoans and microproblematics. The fossils are characteristic of the Wetterstein - type reef communities. Differently from this in the SE part of the studied region a basin existed from the late Pelsonian until the early Ladinian. During the late Illyrian - early Ladinian, the reef prograded to the SE, and reef stage 2 was established. Meanwhile, on the NW part of the platform a lagoon was formed behind the reef. Based on our palaeontological study the stratigraphic range of Colospongia catenulata, Follicatena cautica, Solenolmia manon manon, Vesicocaulis oenipontanus must be extended down to the middle Illyrian. Synsedimentary tectonics were detected in the 1. Binodosus Subzone, 2. Trinodosus Zone - the most part of the Reitzi Zone, 3. Avisianum Subzone.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T-->C transitions (p<10(-4)). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.
Resumo:
BACKGROUND: Dermatophyte identification in tinea capitis is essential for choosing the appropriate treatment and in tinea infections to identify the possible source. The failure of fungi to grow in cultures frequently occurs, especially in cases of previous antifungal therapy. OBJECTIVES: To develop a rapid polymerase chain reaction (PCR) sequencing assay for dermatophyte identification in tinea capitis and tinea corporis. MATERIAL AND METHODS: Fungal DNA was extracted from hair and skin samples that were confirmed to be positive by direct mycological examination. Dermatophytes were identified by the sequence of a 28S ribosomal DNA subunit amplicon generated by nested PCR. RESULTS: Nested PCR was found to be necessary to obtain amplicons in substantial amounts for dermatophyte identification by sequencing. The results agreed with those of classical mycological identification in 14 of 23, 6 of 10, and 20 of 23 cases of tinea capitis, tinea corporis and tinea pedis, respectively, from which a dermatophyte was obtained in culture. In seven of the 56 cases, another dermatophyte was identified, revealing previous misidentification. A dermatophyte was identified in 12 of 18, three of five, and four of nine cases of tinea capitis, tinea corporis and tinea pedis, respectively, in cases in which no dermatophyte grew in culture. CONCLUSIONS: Although the gold standard dermatophyte identification from clinical samples remains fungal cultures, the assay developed in the present study is especially suitable for tinea capitis. Improved sensitivity for the identification of dermatophyte species was obtained as it is possible to identify the dermatophyte when the fungus fails to grow in cultures.
Resumo:
In order to be effective, access to prehospital care must be integrated into a system described as "the chain of survival". This system is composed of 5 essential phases: 1) basic help by witnesses; 2) call for help; 3) basic life support; 4) professional rescue and transport to the appropriate institution and 5) access to emergency ward and hospital management. Each phase is characterized by a specific organization, dedicated skills and means in order to increase the level of care brought to the patient. This article describes the organization, the utility and the specificity of the chain of survival allowing access to prehospital medical care in the western part of Switzerland.
Resumo:
Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.
Resumo:
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.