264 resultados para Calcium channel antagonism
Resumo:
Urinary magnesium and pH are known to modulate urinary calcium excretion, but the mechanisms underlying these relationships are unknown. In this study, the data from 17 clinical trials in which urinary magnesium and pH were pharmacologically manipulated were analyzed, and it was found that the change in urinary calcium excretion is directly proportional to the change in magnesium excretion and inversely proportional to the change in urine pH; a regression equation was generated to relate these variables (R(2) = 0.58). For further exploration of these relationships, intravenous calcium chloride, magnesium chloride, or vehicle was administered to rats. Magnesium infusion significantly increased urinary calcium excretion (normalized to urinary creatinine), but calcium infusion did not affect magnesium excretion. Parathyroidectomy did not prevent this magnesium-induced hypercalciuria. The effect of magnesium loading on calciuria was still observed after treatment with furosemide, which disrupts calcium and magnesium absorption in the thick ascending limb, suggesting that the effect may be mediated by the distal nephron. The calcium channel TRPV5, normally present in the distal tubule, was expressed in Xenopus oocytes. Calcium uptake by TRPV5 was directly inhibited by magnesium and low pH. In summary, these data are compatible with the hypothesis that urinary magnesium directly inhibits renal calcium absorption, which can be negated by high luminal pH, and that this regulation likely takes place in the distal tubule.
Resumo:
L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Objective: To assess the prevalence levels of awareness, treatment and control of hypertension and associated factors in Switzerland. Methods: Population-based cross-sectional study of 6,182 subjects (52.5% women) aged 35-75 years living in Lausanne, Switzerland. Hypertension was defined as blood pressure ≥140/90 mm Hg or current antihypertensive medication. Results: The overall prevalence of hypertension was 36% (95% CI: 35-38%). Among hypertensive participants, 63% were aware of having hypertension. Among aware hypertensives, 78% were treated, and among treated hypertensives 48% were controlled (BP <140/90 mmHg). In multivariate analysis, prevalence of hypertension was associated with older age, male gender, low educational level, high alcohol intake, awareness of diabetes, awareness of dyslipidaemia, obesity and parental history of myocardial infarction (MI). Awareness of hypertension was associated with older age, female gender, awareness of diabetes, awareness of dyslipidaemia, obesity and parental history of MI. Control was associated with younger age, higher educational level and no alcohol intake. Alone or in combination, sartans were the most often prescribed antihypertensive medication category (41%), followed by diuretics, beta-blockers, ACE inhibitors and calcium channel blockers. Only 31% of treated hypertensives were taking ≥2 antihypertensive medications. Conclusion: Although more than half of the participants with hypertension were aware of being hypertensive and more than three quarters of them received a pharmacological treatment, less than half of those treated were adequately controlled. Treated hypertensive subjects should be followed up more closely.
Resumo:
A small proportion of the treated hypertensive population consistently has a blood pressure greater than 140/90 mm Hg despite a triple therapy including a diuretic, a calcium channel blocker, and a blocker of the renin-angiotensin system. According to guidelines, these patients have so-called resistant hypertension. The prevalence of this clinical condition is higher in tertiary than primary care centers and often is associated with chronic kidney disease, diabetes, obesity, and sleep apnea syndrome. Exclusion of pseudoresistant hypertension using ambulatory or home blood pressure monitoring is a crucial step in the investigation of patients with resistant hypertension. Thus, among the multiple factors to consider when investigating patients with resistant hypertension, ambulatory blood pressure monitoring should be performed very early. Among other factors to consider, physicians should investigate patient adherence to therapy, assess the adequacy of treatment, exclude interfering factors, and, finally, look for secondary forms of hypertension. Poor adherence to therapy accounts for 30% to 50% of cases of resistance to therapy depending on the methodology used to diagnose adherence problems. This review discusses the clinical factors implicated in the pathogenesis of resistant hypertension with a particular emphasis on pseudoresistance, drug adherence, and the use of ambulatory blood pressure monitoring for the diagnosis and management of resistant hypertension.
Resumo:
The ACCOMPLISH trial consists of a randomized morbidity-mortality study involving 11506 hypertensive patients at high cardiovascular risk, randomly allocated to a fixed dose combination containing an angiotensin converting enzyme inhibitor (B, benazepril) and either a calcium antagonist (A, amlodipine) or a diuretic (HCTZ, hydrochlorothiazide). The target blood pressure (< 140/90 mmHg) was achieved after a 6 month titration period in 75.4% of patients receiving B+A, versus 72.4% in those on B + HCTZ. Over a mean follow-up of 3 years, the B + A drug regimen was found to reduce significantly more effectively the relative risk cardiovascular mortality (-20%), fatal and non fatal myocardial infarction (-22%) and coronary revascularization (-14%), appearing therefore particularly effective to prevent complications due to myocardial ischemia.
Resumo:
During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.
Resumo:
SUMMARY When exposed to heat stress, plants display a particular set of cellular and molecular responses, such as chaperones expression, which are highly conserved in all organisms. In chapter 1, I studied the ability of heat shock genes to become transiently and abundantly induced under various temperature regimes. To this aim, I designed a highly sensitive heat-shock dependent conditional gene expression system in the moss Physcomitrella patens, using the soybean heatinducible promoter (hsp17.3B). Heat-induced expression of various reporter genes was over three orders of magnitude, in tight correlation with the intensity and duration of the heat treatments. By performing repeated heating/cooling cycles, a massive accumulation of recombinant proteins was obtained. Interestingly, the hsp17.3B promoter was also activated by specific organic chemicals. Thus, in chapter 2, I took advantage of the extreme sensitivity of this promoter to small temperature variations to further address the role of various natural and organic chemicals and develop a plant based-bioassay that can serve as an early warning indicator of toxicity by pollutants and heavy metals. A screen of several organic pollutants from textile and paper industry showed that chlorophenols as well as sulfonated anthraquinones elicited a heat shock like response at noninducing temperatures. Their effects were synergistically amplified by mild elevated temperatures. In contrast to standard methods of pollutant detection, this plant-based biosensor allowed to monitor early stress-responses, in correlation with long-term toxic effect, and to attribute effective toxicity thresholds for pollutants, in a context of varying environmental cues. In chapter 3, I deepened the study of the primary mechanism by which plants sense mild temperature variations and trigger a cellular signal leading to the heat shock response. In addition to the above described heat-inducible reporter line, I generated a P. patens transgenic line to measure, in vivo, variations of cytosolic calcium during heat treatment, and another line to monitor the role of protein unfolding in heat-shock sensing and signalling. The heat shock signalling pathway was found to be triggered by the plasma membrane, where temperature up shift specifically induced the transient opening of a putative high afimity calcium channel. The calcium influx triggered a signalling cascade leading to the activation of the heat shock genes, independently on the presence of misfolded proteins in the cytoplasm. These results strongly suggest that changes in the fluidity of the plasma membrane are the primary trigger of the heatshocksignalling pathway in plants. The present thesis contributes to the understanding of the basic mechanism by which plants perceive and respond to heat and chemical stresses. This may contribute to developing appropriate better strategies to enhance plant productivity under the increasingly stressful environment of global warming. RÉSUME Les plantes exposées à des températures élevées déclenchent rapidement des réponses cellulaires qui conduisent à l'induction de gènes codant pour les heat shock proteins (HSPs). En fonction de la durée d'exposition et de la vitesse à laquelle la température augmente, les HSPs sont fortement et transitoirement induites. Dans le premier chapitre, cette caractéristique aété utilisée pour développer un système inductible d'expression de gènes dans la mousse Physcomitrella patens. En utilisant plusieurs gènes rapporteurs, j'ai montré que le promoteur du gène hsp17.3B du Soja est activé d'une manière. homogène dans tous les tissus de la mousse proportionnellement à l'intensité du heat shock physiologique appliqué. Un très fort taux de protéines recombinantes peut ainsi être produit en réalisant plusieurs cycles induction/recovery. De plus, ce promoteur peut également être activé par des composés organiques, tels que les composés anti-inflammatoires, ce qui constitue une bonne alternative à l'induction par la chaleur. Les HSPs sont induites pour remédier aux dommages cellulaires qui surviennent. Étant donné que le promoteur hsp17.3B est très sensible à des petites augmentations de température ainsi qu'à des composés chimiques, j'ai utilisé les lignées développées dans le chapitre 1 pour identifier des polluants qui déclenchent une réaction de défense impliquant les HSPs. Après un criblage de plusieurs composés, les chlorophénols et les antraquinones sulfonés ont été identifiés comme étant activateurs du promoteur de stress. La détection de leurs effets a été réalisée seulement après quelques heures d'exposition et corrèle parfaitement avec les effets toxiques détectés après de longues périodes d'exposition. Les produits identifiés montrent aussi un effet synergique avec la température, ce qui fait du biosensor développé dans ce chapitre un bon outil pour révéler les effets réels des polluants dans un environnement où les stress chimiques sont combinés aux stress abiotiques. Le troisième chapitre est consacré à l'étude des mécanismes précoces qui permettent aux plantes de percevoir la chaleur et ainsi de déclencher une cascade de signalisation spécifique qui aboutit à l'induction des gènes HSPs. J'ai généré deux nouvelles lignées afin de mesurer en temps réel les changements de concentrations du calcium cytosolique ainsi que l'état de dénaturation des protéines au cours du heat shock. Quand la fluidité de la membrane augmente après élévation de la température, elle semble induire l'ouverture d'un canal qui permet de faire entrer le calcium dans les cellules. Ce dernier initie une cascade de signalisation qui finit par activer la transcription des gènes HSPs indépendamment de la dénaturation de protéines cytoplasmiques. Les résultats présentés dans ce chapitre montrent que la perception de la chaleur se fait essentiellement au niveau de la membrane plasmique qui joue un rôle majeur dans la régulation des gènes HSPs. L'élucidation des mécanismes par lesquels les plantes perçoivent les signaux environnementaux est d'une grande utilité pour le développement de nouvelles stratégies afin d'améliorer la productivité des plantes soumises à des conditions extrêmes. La présente thèse contribue à décortiquer la voie de signalisation impliquée dans la réponse à la chaleur.
Resumo:
Background and aims: there is little information regar ding changes in antihypertensive drug treatment in Switzerland. We aimed at assessing those changes in a population-based, prospective study. Methods: 768 hypertensive subjects (372 women, 397 men) followed for 5 years. Subjects were defined as continuers (no change), switchers (one antihypertensive class replace by another), combiners (one antihypertensive class added) and discontinuers (stopped treatment). Results: Analysis of all patients (mono or combination therapy) showed that 54.6% were continuers, 27.2% combiners, 12.9% switchers and 5.3 % discontinuers. Similar findings were obtained for participants on monotherapy only: 42.2% continuers, 36.7% combiners, 13.4% switchers and 7.7% discontinuers. Combiners had higher systolic and diastolic blood pressure values at baseline than the other groups (p<0.001), while no difference were found for personal and family history and other clinical and biological variables. Compared to continuers, combiners and switchers improved their blood pressure status at follow-up: 26.7% of combiners and 26.3% of switchers improved, versus 17.7% of continuers and 7.3% of discontinuers (p<0.001). Among participants on monotherapy at baseline, continuation was greatest for angiotensin II type 1 receptor blocking agents (ARBs, 53.1%), angiotensin-converting enzyme inhibitors (44.4%) and β-blockers (41.8%). Only one quarter of participants treated with diuretic or calcium channel blockers at baseline remained so at follow-up. Conclusion: Antihypertensivedrug treatment is very stable in Switzerland. There are no big differences in persistence between antihypertensive classes, even if ARBs had the most favorable utilization pattern. Changes are only due to blood pressure level and improve blood pressure status.
Resumo:
BACKGROUND: This study is aimed to assess the prevalence of awareness, treatment and control of high blood pressure (HBP) and associated factors in a Swiss city. DESIGN: Population-based cross-sectional study of 6182 participants (52.5% women) aged 35-75 years living in Lausanne, Switzerland. METHODS: HBP was defined as blood pressure >/=140/90 mmHg or current antihypertensive medication. RESULTS: The overall prevalence of HBP was 36% (95% confidence interval: 35-38%). Among participants with HBP, 63% were aware of it. Among participants aware of HBP, 78% were treated, and among those treated, 48% were controlled (BP <140/90 mmHg). In multivariate analysis, HBP prevalence was associated with older age, male sex, low educational level, high alcohol intake, awareness of diabetes or dyslipidaemia, obesity and parental history of myocardial infarction. HBP awareness was associated with older age, female sex, awareness of diabetes or dyslipidaemia, obesity and parental history of myocardial infarction. HBP control was associated with younger age, higher educational level and no alcohol intake. Alone or in combination, sartans were the most often prescribed antihypertensive medication category (41%), followed by diuretics, beta-blockers, angiotensin converting enzyme inhibitors and calcium channel blockers. Only 31% of participants treated for HBP were taking >/=2 antihypertensive medications. CONCLUSION: Although more than half of all participants with HBP were aware and more than three-quarters of them received a pharmacological treatment, less than half of those treated were adequately controlled.
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
Resumo:
Aims It is well established that dysfunction of voltage-dependent ion channels results in arrhythmias and conduction disturbances in the foetal and adult heart. However, the involvement of voltage-insensitive cationic TRPC (transient receptor potential canonical) channels remains unclear. We assessed the hypothesis that TRPC channels play a crucial role in the spontaneous activity of the developing heart.Methods and results TRPC isoforms were investigated in isolated hearts obtained from 4-day-old chick embryos. Using RT-PCR, western blotting and co-immunoprecipitation, we report for the first time that TRPC1, 3, 4, 5, 6, and 7 isoforms are expressed at the mRNA and protein levels and that they can form a macromolecular complex with the alpha 1C subunit of the L-type voltage-gated calcium channel (Cav1.2) in atria and ventricle. Using ex vivo electrocardiograms, electrograms of isolated atria and ventricle and ventricular mechanograms, we found that inhibition of TRPC channels by SKF-96365 leads to negative chrono-, dromo-, and inotropic effects, prolongs the QT interval, and provokes first-and second-degree atrioventricular blocks. Pyr3, a specific antagonist of TRPC3, affected essentially atrioventricular conduction. On the other hand, specific blockade of the L-type calcium channel with nifedipine rapidly stopped ventricular contractile activity without affecting rhythmic electrical activity.Conclusions These results give new insights into the key role that TRPC channels, via interaction with the Cav1.2 channel, play in regulation of cardiac pacemaking, conduction, ventricular activity, and contractility during cardiogenesis.
Resumo:
The treatment of essential hypertension is based essentially on the prescription of four major classes of antihypertensive drugs, i.e. blockers of the renin-angiotensin system, calcium channel blockers, diuretics and beta-blockers. In recent years, very few new drug therapies of hypertension have become available. Therefore, it is crucial for physicians to optimize their antihypertensive therapies with the drugs available on the market. In each of the classes of antihypertensive drugs, questions have recently been raised: are angiotensin-converting enzyme (ACE) inhibitors superior to angiotensin II receptor blockers (ARB)? Is it possible to reduce the incidence of peripheral oedema with calcium antagonists? Is hydrochlorothiazide really the good diuretic to use in combination therapies? The purpose of this review is to discuss these various questions in the light of the most recent clinical studies and meta-analyses. These latter suggest that ACE inhibitors and ARB are equivalent except for a better tolerability profile of ARB. Third generation calcium channel blockers enable to reduce the incidence of peripheral oedema and chlorthalidone is certainly more effective than hydrochlorothiazide in preventing cardiovascular events in hypertension. At last, studies suggest that drug adherence and long-term persistence under therapy is one of the major issues in the actual management of essential hypertension.
Resumo:
Graft vasculopathy is an accelerated form of coronary artery disease that occurs in transplanted hearts. Despite major advances in immunosuppression, the prevalence of the disease has remained substantially unchanged during the last two decades. According to the 'response to injury' paradigm, graft vasculopathy is the result of a continuous inflammatory response to tissue injury initiated by both alloantigen-dependent and independent stress responses. Experimental evidence suggests that these responses may become self-sustaining, as allograft re-transplantation into the donor strain at a later stage fails to prevent disease progression. Histological evidence of endothelitis and arteritis, in association with intima fibrosis and atherosclerosis, reflects the central role of alloimmunity and inflammation in the development of arterial lesions. Experimental results in gene-targeted mouse models indicate that cellular and humoral immune responses are both involved in the pathogenesis of graft vasculopathy. Circulating antibodies against donor endothelium are found in a significant number of patients, but their pathogenic role is still controversial. Alloantigen-independent factors include donor-transmitted coronary artery disease, surgical trauma, ischaemia-reperfusion injury, viral infections, hyperlipidaemia, hypertension, and glucose intolerance. Recent therapeutic advances include the use of novel immunosuppressive agents such as sirolimus (rapamycin), HMG-CoA reductase inhibitors, calcium channel blockers, and angiotensin converting enzyme inhibitors. Optimal treatment of cardiovascular risk factors remains of paramount importance.
Resumo:
BACKGROUND: Highly recurrent major depressive disorder (MDD) has reportedly increased risk of shifting to bipolar disorder; high recurrence frequency has, therefore, featured as evidence of 'soft bipolarity'. We aimed to investigate the genetic underpinnings of total depressive episode count in recurrent MDD. METHODS: Our primary sample included 1966 MDD cases with negative family history of bipolar disorder from the RADIANT studies. Total episode count was adjusted for gender, age, MDD duration, study and center before being tested for association with genotype in two separate genome-wide analyses (GWAS), in the full set and in a subset of 1364 cases with positive family history of MDD (FH+). We also calculated polygenic scores from the Psychiatric Genomics Consortium MDD and bipolar disorder studies. RESULTS: Episodicity (especially intermediate episode counts) was an independent index of MDD familial aggregation, replicating previous reports. The GWAS produced no genome-wide significant findings. The strongest signals were detected in the full set at MAGI1 (p=5.1×10(-7)), previously associated with bipolar disorder, and in the FH+ subset at STIM1 (p=3.9×10(-6) after imputation), a calcium channel signaling gene. However, these findings failed to replicate in an independent Munich cohort. In the full set polygenic profile analyses, MDD polygenes predicted episodicity better than bipolar polygenes; however, in the FH+ subset, both polygenic scores performed similarly. LIMITATIONS: Episode count was self-reported and, therefore, subject to recall bias. CONCLUSIONS: Our findings lend preliminary support to the hypothesis that highly recurrent MDD with FH+ is part of a 'soft bipolar spectrum' but await replication in larger cohorts.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.