156 resultados para CAPSAICIN-INDUCED APOPTOSIS
Resumo:
Aminoglycoside antibiotics are ototoxic, inducing irreversible sensorineural hearing loss mediated by oxidative and excitotoxic stresses. The NF-kappaB pathway is involved in the response to aminoglycoside damage in the cochlea. However, the molecular mechanisms of this ototoxicity remain unclear. We investigated the expression of PKCzeta, a key regulator of NF-kappaB activation, in response to aminoglycoside treatment. Amikacin induced PKCzeta cleavage and nuclear translocation. These events were concomitant with chromatin condensation and paralleled the decrease in NF-kappaB (p65) levels in the nucleus. Amikacin also induced the nuclear translocation of apoptotic inducing factor (AIF). Prior treatment with aspirin prevented PKCzeta cleavage and nuclear translocation. Thus, aspirin counteracts the early effects of amikacin, thereby protecting hair cells and spiral ganglion neurons. These results demonstrate that PKCzeta acts as sentinel connecting specific survival pathways to mediate cellular responses to amikacin ototoxicity.
Resumo:
In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.
Resumo:
Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent.
Resumo:
α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.
Resumo:
HDLs protect pancreatic beta cells against apoptosis induced by several endoplasmic reticulum (ER) stressors, including thapsigargin, cyclopiazonic acid, palmitate and insulin over-expression. This protection is mediated by the capacity of HDLs to maintain proper ER morphology and ER functions such as protein folding and trafficking. Here, we identified a distinct mode of protection exerted by HDLs in beta cells challenged with tunicamycin (TM), a protein glycosylation inhibitor inducing ER stress. HDLs were found to inhibit apoptosis induced by TM in the MIN6 insulinoma cell line and this correlated with the maintenance of a normal ER morphology. Surprisingly however, this protective response was neither associated with a significant ER stress reduction, nor with restoration of protein folding and trafficking in the ER. These data indicate that HDLs can use at least two mechanisms to protect beta cells against ER stressors. One that relies on the maintenance of ER function and one that operates independently of ER function modulation. The capacity of HDLs to activate several anti-apoptotic pathways in beta cells may explain their ability to efficiently protect these cells against a variety of insults.
Resumo:
Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart.
Resumo:
Pathogenesis in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65(-/-) mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65(-/-) mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65(-/-)/Gnat1(-/-) mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65(-/-)/Bax(-/-) mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65(-/-) mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65(-/-)/Bax(-/-) mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.This is the first report, to our knowledge, that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in Rpe65-dependent LCA disease. These results highlight the necessity to investigate and understand the specific death signaling pathways committed in rods and cones to develop effective therapeutic approaches to treat RP diseases.
Resumo:
OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.
Resumo:
Age-related macular degeneration is characterized by the formation of drusen containing amyloid-β (Aβ) and the degeneration of photoreceptors. To explore the largely unknown role of Aβ in the retina, we investigated the effects on photoreceptors of the oligomeric form of Aβ(1-42). Subretinal injection of the Aβ peptide induced misplaced expression of recoverin and synaptophysin in the photoreceptors, oxidative stress in their inner and outer segments, and finally apoptosis. Aβ did not induce cell death in purified photoreceptor cell cultures, but did so in retinal cell cultures, thereby suggesting that the cellular environment plays a role in Aβ-induced photoreceptor apoptosis. Subretinal injection of Aβ was followed by activation and migration of microglial cells and then by photoreceptor apoptosis. Microglial cells phagocytosed rhodopsin-containing debris and Aβ in the subretinal space. Quantitative RT-PCR allowed us to identify a specific gene expression profile associated with the Aβ-induced progression of retinal degeneration and consistent with oxidative stress, inflammation, and an apoptotic program. The gene most highly upregulated in Aβ-injected retinas was that for the chemokine CCL2, and its absence or that of its cognate receptor CCR2 greatly reduced migration of activated microglial cells to the site of retinal injury and profoundly worsened photoreceptor degeneration and disorganization of the retinal pigment epithelium in Aβ-injected retinas. Our study pinpoints the roles of Aβ and of CCL2/CCR2 axis-dependent inflammation in photoreceptor apoptosis.
Resumo:
Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, is expressed in T lymphocytes, and exerts an anti-apoptotic function in these cells. We reported that GITR is also highly expressed in the skin, specifically in keratinocytes, and that it is under negative transcriptional control of p21(Cip1/WAF1), independently from the cell cycle. Although GITR expression is higher in p21-deficient keratinocytes and skin, it is down-modulated with differentiation and in response to UVB. The combined analysis of keratinocytes with increased GITR expression versus normal keratinocytes and skin of mice with a disruption of the GITR gene indicates that this protein protects keratinocytes from UVB-induced apoptosis both in vitro and in vivo.
Resumo:
IB1/JIP-1 is a scaffold protein that interacts with upstream components of the c-Jun N-terminal kinase (JNK) signaling pathway. IB1 is expressed at high levels in pancreatic beta cells and may therefore exert a tight control on signaling events mediated by JNK in these cells. Activation of JNK by interleukin 1 (IL-1beta) or by the upstream JNK constitutive activator DeltaMEKK1 promoted apoptosis in two pancreatic beta cell lines and decreased IB1 content by 50-60%. To study the functional consequences of the reduced IB1 content in beta cell lines, we used an insulin-secreting cell line expressing an inducible IB1 antisense RNA that lead to a 38% IB1 decrease. Reducing IB1 levels in these cells increased phosphorylation of c-Jun and increased the apoptotic rate in presence of IL-1beta. Nitric oxide production was not stimulated by expression of the IB1 antisense RNA. Complementary experiments indicated that overexpression of IB1 in insulin-producing cells prevented JNK-mediated activation of the transcription factors c-Jun, ATF2, and Elk1 and decreased IL-1beta- and DeltaMEKK1-induced apoptosis. These data indicate that IB1 plays an anti-apoptotic function in insulin-producing cells probably by controlling the activity of the JNK signaling pathway.
Resumo:
Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.
Resumo:
Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.