58 resultados para Bone Mass
Resumo:
Osteoporosis is characterized by low bone mass, micro architectural impairment of bone tissue, and a subsequent in crease in fracture risk. Fractures or the vertebrae and distal forearm, as well as the proximal femur, or hip fracture, are included. Hip fracture is associated with high mortality, morbidity and medical expenses. There is a dramatic increase in the incidence of hip fracture with age. Hip fracture incidence is 350 times higher in women aged 85 years and over comparatively to women between 35 and 44 years of age. In recent studies in Switzerland, it was observed that the annual age adjusted incidence rate of hip fracture was comparable with similar rates for white population in industrialized countries, although in men the rates were relatively high. Among the major risk factors for osteoporosis are age, female gender, white and Asian race, and menopause. Postmenopausal estrogen replacement therapy reduces bone resorption. Family history of osteoporosis, frail constitution, as well as excessive alcohol intake, cigarette smoking, chronic insufficient nutritional calcium intake and physical inactivity are other risk factors. A cardinal element is the peak bone mass reached in the third or fourth decade of life. Independently of osteoporosis, falls are a key agent in fractures; several medical conditions and drugs increase the risk of falling. There is an enormous social and financial cost of osteoporosis; the annual cost of medical treatment only for hip fracture is close to Fr. 200 million in Switzerland. The burden of osteoporosis is likely to increase in the future because of the demographic aging of the population unless large scale preventive interventions are undertaken.
Resumo:
The practitioner, as well as specialist such as gynecologist and endocrinologist, may face in their office women with eating disorders, abnormalities of menstrual cycles and low bone mass, which may be the first hints of the female athlete triad. In these situations, the practitioner may search other findings of these triad by looking at some particular physical findings and by using appropriate questionnaire. In some advanced forms of this triad specific abnormalities of eating disorders (anorexia and boulimia) may be present as well as amenorrhea and osteoporosis, which may disturb the well-being and cause health damages of women practising sport either as amateur or in a elite setting. An appropriate handling of such disorders has to be proposed to these women.
Resumo:
Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.
Resumo:
We carried out a cross-section study of the sex-specific relationship between bone mineral content and physical activity at sites with different loading in pre- and early pubertal girls and boys. There was significant sensitivity of bone mineral content of the hip to physical exercise in boys, but not in girls. BACKGROUND: Since little is known whether there are sex differences in sensitivity of bone to loading, we investigated sex differences in the cross-sectional association between measures of physical activity (PA) and bone mass and size in pre- and early pubertal children of both sexes. METHODS: We measured bone mineral content/density (BMC/BMD) and fat-free mass (FFM) in 269 6- to 13-year-old children from randomly selected schools by dual-energy X-ray absorptiometry. Physical activity (PA) was measured by accelerometers and lower extremity strength by a jump-and-reach test. RESULTS: Boys (n = 128) had higher hip and total body BMC and BMD, higher FFM, higher muscle strength and were more physically active than girls (n = 141). Total hip BMC was positively associated with time spent in total and vigorous PA in boys (r = 0.20-0.33, p < 0.01), but not in girls (r = 0.02-0.04, p = ns), even after adjusting for FFM and strength. While boys and girls in the lowest tertile of vigorous PA (22 min/day) did not differ in hip BMC (15.62 vs 15.52 g), boys in the highest tertile (72 min/day) had significantly higher values than the corresponding girls (16.84 vs 15.71 g, p < 0.05). CONCLUSIONS: Sex differences in BMC during pre- and early puberty may be related to a different sensitivity of bone to physical loading, irrespective of muscle mass.
Resumo:
To prevent osteoporotic fracture occurrence, a variety of treatment regimens with different mechanisms of action is available. The antiresorptive bisphosphonate drugs are currently the most commonly prescribed agents in the management of patients with osteoporosis. The recombinant amino-terminal fragment of human parathyroid hormone (Teriparatide) is a bone anabolic agent which reduces fracture risk by increasing bone mass and improving bone microarchitecture. Teriparatide treatment reduces vertebral and non-vertebral fracture risk markedly in women and men with idiopathic osteoporosis, or with glucocorticoid-induced osteoporosis. Teriparatide should thus be considered as first line treatment for postmenopausal women and for men with severe osteoporosis.
Resumo:
Calcium and vitamin D supplementation are warranted for the treatment of osteoporosis, when other specific drugs are used. Vitamin D supplementation is necessary when the plasma level of 25-hydroxy-vitamin D is below 30 nmol/l (12 pg/l) in order to avoid any increase of the plasma parathyroid hormone level. Bisphosphonates are the most widely drugs used. Recent advances will provide patients with a more convenient therapeutically equivalent alternative: the once-weekly oral dosing regimen and probably the possibility to give infusions at intervals of up to one year. Parathyroid hormone administered subcutaneously daily produced a dramatic increase of trabecular and cortical bone mineral density, and an important decrease of vertebral and nonvertebral fracture risk. Strontium is a new original drug, which stimulates bone formation, and inhibits bone resorption. It significantly improves trabecular and cortical bone mass. Calcitonin not only prevents the recurrence of vertebral fractures, but possibly could decrease hip fractures risk. Hydrochlorothiazide preserves the bone mineral density, and decreases nonvertebral fracture risk, as showed in epidemiological studies. Large clinical trials with statins therapy in appropriate populations are required to find out whether these drugs have any role in preventing fractures.
Resumo:
BACKGROUND: Hypercalcaemia has been shown to occur in about 20% of patients with major burns requiring prolonged intensive care unit (ICU) treatment, and it may be associated with renal failure. Having observed the early onset of hypercalcaemia, the study aimed to determine the frequency and timing of this condition in a European patient cohort. METHODS: A retrospective cohort study on a prospectively collected, computerised database of the 225 burn-injury ICU admissions between 2001 and 2007 was undertaken. The inclusion criteria included: burns >20% of the body surface area (BSA) or in-hospital stay >20 days. Hypercalcaemia was defined as an ionised plasma calcium (Ca(2+)) concentration >1.32 mmol l(-1) (or total corrected calcium=[Ca]c>2.55 mmol l(-1)). Four emblematic cases are reported in this article. RESULTS: A total of 73 patients met the inclusion criteria (age: 13-88 years, burns: 12-85% BSA): of these, 22 (30%) developed hypercalcaemia. The median time to the first hypercalcaemia value was 21 days. Only 11 patients had both high Ca(2+) and elevated [Ca]c (which remained normal in others). The risk factors of the disorder were burned surface (p=0.017) and immobilisation (fluidised bed use: p<0.05, duration: p=0.02) followed by burned BSA. Acute renal failure tended to be more frequent in hypercalcaemic patients (five (23%) vs. three (6%): p=0.11), while mortality was not increased. The disorder resolved with hydration and mobilisation in most cases: pamidronate was successful in three cases that were most severe. CONCLUSION: Hypercalcaemia and associated acute renal failure occur more frequently and earlier than previously reported. Determining the ionised Ca rather than the total Ca with albumin correction enables earlier detection of hypercalcaemia. Bisphosphonates are an effective treatment option in controlling severe hypercalcaemia and preventing bone loss.
Resumo:
Dual-energy X-ray absorptiometry (DXA) is commonly used in the care of patients for diagnostic classification of osteoporosis, low bone mass (osteopenia), or normal bone density; assessment of fracture risk; and monitoring changes in bone density over time. The development of other technologies for the evaluation of skeletal health has been associated with uncertainties regarding their applications in clinical practice. Quantitative ultrasound (QUS), a technology for measuring properties of bone at peripheral skeletal sites, is more portable and less expensive than DXA, without the use of ionizing radiation. The proliferation of QUS devices that are technologically diverse, measuring and reporting variable bone parameters in different ways, examining different skeletal sites, and having differing levels of validating data for association with DXA-measured bone density and fracture risk, has created many challenges in applying QUS for use in clinical practice. The International Society for Clinical Densitometry (ISCD) 2007 Position Development Conference (PDC) addressed clinical applications of QUS for fracture risk assessment, diagnosis of osteoporosis, treatment initiation, monitoring of treatment, and quality assurance/quality control. The ISCD Official Positions on QUS resulting from this PDC, the rationale for their establishment, and recommendations for further study are presented here.
Resumo:
Risk factors for fracture can be purely skeletal, e.g., bone mass, microarchitecture or geometry, or a combination of bone and falls risk related factors such as age and functional status. The remit of this Task Force was to review the evidence and consider if falls should be incorporated into the FRAX® model or, alternatively, to provide guidance to assist clinicians in clinical decision-making for patients with a falls history. It is clear that falls are a risk factor for fracture. Fracture probability may be underestimated by FRAX® in individuals with a history of frequent falls. The substantial evidence that various interventions are effective in reducing falls risk was reviewed. Targeting falls risk reduction strategies towards frail older people at high risk for indoor falls is appropriate. This Task Force believes that further fracture reduction requires measures to reduce falls risk in addition to bone directed therapy. Clinicians should recognize that patients with frequent falls are at higher fracture risk than currently estimated by FRAX® and include this in decision-making. However, quantitative adjustment of the FRAX® estimated risk based on falls history is not currently possible. In the long term, incorporation of falls as a risk factor in the FRAX® model would be ideal.
Resumo:
Osteoporosis is complicated by the occurrence of fragility fractures. Over past years, various treatment options have become available, mostly potent antiresorptive agents such as bisphosphonates and denosumab. However, antiresorptive therapy cannot fully and rapidly restore bone mass and structure that has been lost because of increased remodelling. Alternatively recombinant human parathyroid hormone (rhPTH) analogues do increase the formation of new bone material. The bone formation stimulated by intermittent PTH analogues not only increases bone mineral density (BMD) and bone mass but also improves the microarchitecture of the skeleton, thereby reducing incidence of vertebral and nonvertebral fractures. Teriparatide, a recombinant human PTH fragment available in Switzerland, is reimbursed as second-line treatment in postmenopausal women and men with increased fracture risk, specifically in patients with incident fractures under antiresorptive therapy or patients with glucocorticoid-induced osteoporosis and intolerance to antiresorptives. This position paper focuses on practical aspects in the management of patients on teriparatide treatment. Potential first-line indications for osteoanabolic treatment as well as the benefits and limitations of sequential and combination therapy with antiresorptive drugs are discussed.
Resumo:
The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.
Resumo:
Ballet dancers have on average a low bone mineral content (BMC), with elevated fracture-risk, low body mass index (BMI) for age (body mass index, kg/m2), low energy intake, and delayed puberty. This study aims at a better understanding of the interactions of these factors, especially with regard to nutrition. During a competition for pre-professional dancers we examined 127 female participants (60 Asians, 67 Caucasians). They averaged 16.7 years of age, started dancing at 5.8 years, and danced 22 hours/week. Assessments were made for BMI, BMC (DXA), and bone mineral apparent density (BMAD) at the lumbar spine and femoral neck, pubertal stage (Tanner score), and nutritional status (EAT-40 questionnaire and a qualitative three-day dietary record). BMI for age was found to be normal in only 42.5% of the dancers, while 15.7% had a more or less severe degree of thinness (12.6% Grade2 and 3.1% Grade 3 thinness). Menarche was late (13.9 years, range 11 to 16.8 years). Food intake, evaluated by number of consumed food portions, was below the recommendations for a normally active population in all food groups except animal proteins, where the intake was more than twice the recommended amount. In this population, with low BMI and intense exercise, BMC was low and associated with nutritional factors; dairy products had a positive and non-dairy proteins a negative influence. A positive correlation between BMAD and years since menarche confirmed the importance of exposure to estrogens and the negative impact of delayed puberty. Because of this and the probable negative influence of a high intake of non-dairy proteins, such as meat, fish, and eggs, and the positive association with a high dairy intake, ballet schools should promote balanced diets and normal weight and should recognize and help dancers avoid eating disorders and delayed puberty caused by extensive dancing and inadequate nutrition.
Resumo:
OBJECTIVE: To evaluate the effect of strenuous exercise on bone metabolism and related hormones in elderly subjects. METHODS: Twenty one active elderly subjects (11 men and 10 women; mean age 73.3 years) showing a mean theoretical Vo2max of 151.4% participated. Concentrations of plasma ionised calcium (iCa), serum intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25(OH)D), and 1.25-dihydroxy-vitamin D3 (1.25(OH)2D3), as well as the bone biochemical markers type I collagen C-telopeptide for bone resorption and osteocalcin and bone alkaline phosphatase for bone formation, were analysed before and after a maximal incremental exercise test. RESULTS: At basal level, iPTH was positively correlated with age (r = 0.56, p < 0.01) and negatively correlated with 25(OH)D (r = -0.50; p < 0.01) and 1.25(OH)2D3 (r = -0.47; p < 0.05). Moreover, 25(OH)D and 1.25(OH)2D3 levels were negatively correlated with age (r = -0.50, p < 0.01 and r = -0.53, p < 0.01, respectively). After exercise, iCa and 25(OH)D decreased (p < 0.001 and p = 0.01, respectively) while iPTH increased (p < 0.001). The levels of 1.25(OH)2D3, bone biochemical markers, haematocrit, and haemoglobin were unchanged. The variations in iCa and 25(OH)D were not related to age and/or sex. The iPTH variation was directly related to basal iPTH levels (p < 0.01) and indirectly related to age. CONCLUSIONS: In active elderly subjects, strenuous exercise disturbed calcium homeostasis and bone related hormones without immediate measurable effect on bone turnover. Although an increase in iPTH could have an anabolic action on bone tissue, our findings from our short term study did not allow us to conclude that such action occurred.
Resumo:
Malnutrition, a risk factor for osteoporotic fractures, is frequent in elderly people and, is underdiagnosed and undertreated. There are only few studies on the nutritional status of elderly people in Europe. The Mini Nutritional Assessment (MNA) is a non invasive and validated questionnaire to evaluate nutritional status in elderly people, classified in three groups: 1 degree score < 17: malnourished, 2 degrees score >17 and < 24: at risk of malnutrition, 3 degrees score >24: well-nourished, with a maximum of 30 points. Quantitative ultrasound of bone (QUS) is a method for assessing quality of bone which can be easily performed in nursing homes. Therefore, these two tests allowed to study the relationships between nutritional status and ultrasonic parameters of bone in 78 institutionalized women aged 86 +/- 6 years, living in 11 nursing homes around Lausanne (Switzerland). All were assessed by the MNA, had a measurement of the tricipital skin fold and of the grip strength. Functional status was evaluated by the scale "Activity of Daily Living" (ADL), and serum albumin level was measured when permitted. All had QUS of the calcaneus (with an Achilles, GE Lunar). The measured parameters are the Broadband Ultrasound Attenuation (BUA), attenuation of a band of ultrasonic frequencies through the medium, expressed in dB/MHz, and the Speed of Sound (SOS), speed of the ultrasounds through the medium, expressed in m/s. A third parameter, the stiffness index (SI), expressed as a percentage of the values obtained by the manufacturer in a young population and derived from BUA and SOS, was calculated automatically : SI = (0.67xBUA) + (0.28xSOS) - 420, expressed in percent compared to a young adult population (%YA). Fifteen percent of the women were undernourished and 58% were at risk of malnutrition. As expected, compared with the well-nourished minority, undernourished subjects had significant lower body mass index (BMI), tricipital skin fold (TSF), ADL score and albumin level (p < 0,01). The subjects "at risk of malnutrition" had significant lower BMI, ADL score (p < 0.01), tricipital skin fold and serum albumin (p < 0.05). Ultrasound parameters were low independently of the nutritional status. MNA score correlated significantly with tricipital skin fold (r = 0.508, p < 0.01), ADL (r = 0.538, p < 0.01) and albumin serum level (r = 0.409, p = 0.01). There was a trend for a correlation between the MNA and the ultrasound parameter BUA (r = 0.207, p = 0.07), whereas no correlation was found with SOS and SI. A multivariate analysis showed that tricipital skin fold and ADL explained 61% of the variance of the MNA. In conclusion, using simple and non invasive methods, this study showed that malnutrition and osteoporosis are frequent in institutionalized elderly persons in our country, and the ultrasound parameters are influenced by many others factors in addition to nutrition, especially at this age and in elderly residents of nursing homes.