19 resultados para Benthocosm F2
Resumo:
Various pulmonary artery preparations in vitro demonstrate sustained endothelium-dependent contractions upon hypoxia. To determine whether endothelin-1 could mediate this phenomenon, we examined the effect of bosentan, a new antagonist of both the ETA and ETB subtypes of the endothelin receptor. Small (300 pm) pulmonary arteries from rats were mounted on a myograph, precontracted with prostaglandin F2 alpha and exposed to hypoxia (PO2, 10 to 15 mm Hg, measured on-line) for 45 min. Endothelium-intact control rings exhibited a biphasic response, with a transient initial vasoconstriction (phase 1) followed by a second slowly developing sustained contraction (phase 2). Expressed in percent of the maximal response to 80 mmol/L KCl, the amplitudes of phase 1 (peak tension) and 2 (tension after 45 min of hypoxia) averaged 37 +/- 12% and 17 +/- 14%, respectively (n = 11). In endothelium-denuded rings, phase 1 persisted while the amplitude of phase 2 was reduced to 2 +/- 12% (p < 0.05, n = 8), showing the endothelium dependence of this contraction. Neither phase was significantly decreased in rings treated with 10(-5) mmol/L bosentan (38 +/- 15% and 17 +/- 12%, respectively, n = 6). The PO2 threshold for onset of hypoxic contraction was not significantly different among these three groups and averaged 32 +/- 24 mm Hg. In a separate experiment, we assessed the inhibitory effect of 10(-5) mol/L bosentan on the response to 10(-8) mol/L endothelin-I. Rings treated for 45 min with 10(-8) mol/L endothelin-1 alone exhibited a maximal contraction of 75 +/- 27% (n = 6). This was reduced to 4 +/- 17% (p < 0.01, n = 6) in rings treated with both 10(-8) mol/L endothelin-1 and 10(-5) mol/L bosentan. We conclude that complete blockade of all endothelin receptor subtypes has no effect on either endothelium-dependent or -independent hypoxic contractions in this preparation. This suggests that endothelial factors other than endothelin-I mediate the acute hypoxic contractions of small pulmonary arteries in the rat.
Resumo:
Orosomucoid (ORM) phenotyping has been performed on 329 unrelated Swiss subjects, using immobilized pH gradients with 8 M urea and 2% v/v 2-mercaptoethanol followed by immunoblotting. After desialylation the band patterns of ORM confirmed that the polymorphism of the structural locus ORM1 is controlled by three codominant autosomal alleles (ORM1*F1, ORM1*S and ORM1*F2). One rare and one new allele were detected. The rare variant, tentatively assigned to the second structural locus ORM2, is observed in a cathodal position and named ORM2 B1. The new variant, tentatively assigned to the first structural locus ORM1, is observed in a region located between ORM1 S and ORM1 F2, and named ORM1 F3. Moreover, the pI values of the ORM variants have been measured accurately with Immobiline Dry Plates (LKB): they were found to be within the pH range 4.93-5.14.
Resumo:
PURPOSE: To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. MATERIALS AND METHODS: The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. RESULTS: The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10(-3) mm(2)/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10(-3) mm(2)/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10(-3) mm(2)/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm(2) CONCLUSION: The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm(2) range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. KEY POINTS: ? For normal liver, tri-exponential IVIM model might be superior to bi-exponential ? A very fast compartment (D = 404.00 ± 43.7 × 10 (-3) mm (2) /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model ? The compartment contributes to the IVIM signal only for b ≤ 15 s/mm (2.)
Resumo:
The survival of preterm babies has increased over the last few decades. However, disorders associated with preterm birth, known as oxygen radical diseases of neonatology, such as retinopathy, bronchopulmonary dysplasia, periventricular leukomalacia, and necrotizing enterocolitis are severe complications related to oxidative stress, which can be defined by an imbalance between oxidative reactive species production and antioxidant defenses. Oxidative stress causes lipid, protein, and DNA damage. Preterm infants have decreased antioxidant defenses in response to oxidative challenges, because the physiologic increase of antioxidant capacity occurs at the end of gestation in preparation for the transition to extrauterine life. Therefore, preterm infants are more sensitive to neonatal oxidative stress, notably when supplemental oxygen is being delivered. Furthermore, despite recent advances in the management of neonatal respiratory distress syndrome, controversies persist concerning the oxygenation saturation targets that should be used in caring for preterm babies. Identification of adequate biomarkers of oxidative stress in preterm infants such as 8-iso-prostaglandin F2α, and adduction of malondialdehyde to hemoglobin is important to promote specific therapeutic approaches. At present, no therapeutic strategy has been validated as prevention or treatment against oxidative stress. Breastfeeding should be considered as the main measure to improve the antioxidant status of preterm infants. In the last few years, melatonin has emerged as a protective molecule against oxidative stress, with antioxidant and free-radical scavenger roles, in experimental and preliminary human studies, giving hope that it can be used in preterm infants in the near future.