25 resultados para BURIAL
Resumo:
On Ile de Groix, Variscan metamorphic former tholeiitic and alkaline basalts occur as glaucophane-eclogites, blueschists and greenschists in isolated lenses and layers within metapelites. Whole-rock delta O-18(SMOW) values of the metabasites show limited variations (10.4-12.0 parts per thousand) and no systematic differences among rock types and metamorphic grades. This provides no argument for large-scale blueschist-to-greenschist transformation driven by infiltration of externally derived fluids. Metamorphic mineralogical changes should have been triggered by internal fluids. Element variations in interlayered blue- and greenschists can be attributed to magmatic fractionation. Assemblages with garnet, clinopyroxene and glaucophane of a high-pressure/low-temperature (HP-LT) metamorphism M1, and NaCa-amphiboles (barroisite, magnesiohornblende, actinolite) of a medium-pressure/medium-temperature metamorphism M2 crystallized during deformation Dl. Detailed core-rim zonation profiles display increasing and then decreasing Al-IV in glaucophane of M1. NaCa-amphiboles of M2, mantling glaucophane and crystallized in porphyroblasts, show first increasing, then decreasing, Al-IV and Al-IV. Empirically calibrated thermobarometers allowed P-T path reconstructions. In glaucophane-eclogites of a metamorphic zone I, a prograde evolution to M1 peak conditions at 400-500 degreesC/10-12 kbar was followed by a retrograde P-T path within the glaucophane stability field. The subsequent M2 evolution was again prograde up to > 600 degreesC at 8 kbar and then retrograde. Similarly, in metamorphic zones II and III, prograde and retrograde paths of MI and M2 at lower maximal temperatures and pressures exist. The almost complete metamorphic cycle during M2 signalizes that the HP-LT rocks escaped from an early erosion by a moderate second burial event and explains the longlasting slow uplift with low average cooling rates.
Resumo:
The carbon isotopic signature of carbonates depends on secular variations of organic carbon and carbonate carbon production/burial rates. A decrease in carbonate productivity makes the organic/carbonate carbon ratio unstable up to the point that even minor variations in the organic carbon reservoirs can provoke carbon isotopic shifts. The delta(13)C positive shifts of the middle Carixian (early Pliensbachian) and the early Bajocian recorded in the Umbria-Marche-Sabina domain represent a good example of this mechanism. Both sedimentology and lithostratigraphy of pelagic platform-basin carbonate systems in this area show that important changes in the source of carbonates correspond to the observed isotopic shifts. The middle Carixian event is in fact well correlatable to the drastic reduction of benthic carbonate production on rift-related intrabasinal highs, which then became pelagic carbonate platforms. The early Bajocian event is concomitant with the beginning of a long hiatus on the pelagic carbonate platforms and with a drop of the biodiversity of calcareous organisms followed by the onset of biosiliceous sedimentation in basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study provides an organic carbon stable isotope (delta(13)C(org)) record calibrated with detailed ammonite biostratigraphy, following the end-Triassic biological crisis. Precise correlation between this crucial fossil group and the delta(13)C(org) record is key to understanding feedbacks between biological and environmental events following mass extinction. The latest Triassic and Hettangian delta(13)C(org) record shows several negative and positive excursions. The end-Triassic negative shift coinciding with the mass extinction interval is followed by a positive excursion in the earliest Hettangian Psiloceras spelae beds, which marks the onset of recovery in the marine ecosystem. This positive trend is interrupted by a second negative delta(13)C(org) excursion in the P. pacificum beds related to a minor ammonite extinction event. This pattern of the delta(13)C(org) curve culminates in the uppermost Hettangian Angulata Zone major positive excursion. This indicates that both the ecosystem and the carbon cycle remained in a state of perturbation for at least 2 Ma, although the recovery of some pelagic taxa already began at the base of Jurassic. The early and late Hettangian positive delta(13)C(org) excursions have been confused in several recent papers. Here, we show that during the Hettangian there are indeed two distinct positive delta(13)C(org) excursions. Phases of anoxia and further pulses of Central Atlantic Magmatic Province volcanism during the Hettangian might have inhibited the full recovery for that interval of time. The main Liasicus-Angulata organic positive CIE (carbon isotope excursion) during the Late Hettangian might be related to gradual decreasing of pCO(2) due to protracted high organic burial, and coincides with a second phase of recovery, as indicated by a pulse of ammonoid diversification.
Resumo:
Quartz-carbonate-chlorite veins were studied in borehole samples of the RWTH-1 well in Aachen. Veins formed in Devonian rocks in the footwall of the Aachen thrust during Variscan deformation and associated fluid flow. Primary fluid inclusions indicate subsolvus unmixing of a homogenous H(2)O-CO(2)-CH(4)-(N(2))-Na-(K)-Cl fluid into a H(2)O-Na-(K)-Cl solution and a vapour-rich CO(2)-(H(2)O, CH(4), N(2)) fluid. The aqueous end-member composition resembles that of metamorphic fluids of the Variscan front zone with salinities ranging from 4 to 7% NaCl equiv. and maximum homogenisation temperatures of close to 400A degrees C. Pressure estimates indicate a burial depth between 4,500 and 8,000 m at geothermal gradients between 50 and 75A degrees C/26 MPa, but pressure decrease to sublithostatic conditions is also indicated, probably as a consequence of fracture opening during episodic seismic activity. A second fluid system, mainly preserved in pseudo-secondary and secondary fluid inclusions, is characterised by fluid temperatures between 200 and 250A degrees C and salinities of < 5% NaCl equiv. Bulk stable isotope analyses of fluids released from vein quartz, calcite, and dolomite by decrepitation yielded delta D(H2O) values from -89 to -113 aEuro degrees, delta(13)C(CH4) from -26.9 to -28.9aEuro degrees (VPDB) and delta(13)C(CO2) from -12.8 to -23.3aEuro degrees (VPDB). The low delta D and delta(13)C range of the fluids is considered to be due to interaction with cracked hydrocarbons. The second fluid influx caused partial isotope exchange and disequilibrium. It is envisaged that an initial short lived flux of hot metamorphic fluids expelled from the epizonal metamorphic domains of the Stavelot-Venn massif. The metamorphic fluid was focused along major thrust faults of the Variscan front zone such as the Aachen thrust. A second fluid influx was introduced from formation waters in the footwall of the Aachen thrust as a consequence of progressive deformation. Mixing of the cooler and lower salinity formation water with the hot metamorphic fluid during episodic fluid trapping resulted in an evolving range of physicochemical fluid inclusion characteristics.
Resumo:
The Mississippi Valley-type (MVT) Pb-Zn ore district at Mezica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mezica covers an area of 64 km(2) with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have delta(34)S values in the range of -24.7 to -1.5% VCDT (-13.5 +/- 5.0%) and -24.7 to -1.4% (-10.7 +/- 5.9%), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide delta(34)S values are negative within a broad range, with delta(34)S(pyrite) < delta(34)S(sphalerite) < delta(34)S(galena) for both conformable and discordant orebodies, indicating isotopically heterogeneous H(2)S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of (34)S-enriched H(2)S to the ore fluid. The variations of delta(34)S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative delta(34)S values with time along the different sphalerite generations are consistent with mixing of different H(2)S sources, with a decreasing contribution of H(2)S from regional TSR, and an increase from a local H(2)S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (-11.9 to -1.7%; -7.0 +/- 2.7%, n=12) tends to be depleted in (34)S compared with conformable ore (-24.7 to -2.8%, -11.7 +/- 6.2%, n=39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide delta(34)S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H(2)S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H(2)S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.
Resumo:
Numerous measurements by XRD of the Scherrer width at half-peak height (001 reflection of illite), coupled with analyses of clay-size assemblages, provide evidence for strong variations in the conditions of low temperature metamorphism in the Tethyan Himalaya metasediments between the Spiti river and the Tso Morari. Three sectors can be distinguished along the Spiti river-Tso Morari transect. In the SW, the Takling and Parang La area is characterised by a metamorphism around anchizone-epizone boundary conditions. Further north, in the Dutung area, the metamorphic grade abruptly decreases to weak diagenesis, with the presence of mixed-layered clay phases. At the end of the profile towards the NE, a progressive metamorphic increase up to greenschist facies is recorded, marked by the appearance of biotite and chloritoid. The combination of these data with the structural. observations permits to propose that a nappe stack has been crosscut by the younger Dutung-Thaktote extensional fault zone (DTFZ). The change in metamorphism across this zone helps to assess the displacements which occurred during synorogenic extension. In the SW and NE parts of the studied transect, a burial of 12 km has been estimated, assuming a geothermal gradient of 25 degrees C/km. In the SW part, this burial is due to the juxtaposition of the Shikar Beh and Mata nappes and in the NE part, solely to burial beneath the Mata nappe. In the central part of the profile, the effect of the DTFZ is to bring down diagenetic sediments in-between the two aforesaid metamorphic zones. The offset along the Dutung-Thaktote normal faults is estimated at 16 km.
Resumo:
Une fois déposé, un sédiment est affecté au cours de son enfouissement par un ensemble de processus, regroupé sous le terme diagenèse, le transformant parfois légèrement ou bien suffisamment pour le rendre méconnaissable. Ces modifications ont des conséquences sur les propriétés pétrophysiques qui peuvent être positives ou négatives, c'est-à-dire les améliorer ou bien les détériorer. Une voie alternative de représentation numérique des processus, affranchie de l'utilisation des réactions physico-chimiques, a été adoptée et développée en mimant le déplacement du ou des fluides diagénétiques. Cette méthode s'appuie sur le principe d'un automate cellulaire et permet de simplifier les phénomènes sans sacrifier le résultat et permet de représenter les phénomènes diagénétiques à une échelle fine. Les paramètres sont essentiellement numériques ou mathématiques et nécessitent d'être mieux compris et renseignés à partir de données réelles issues d'études d'affleurements et du travail analytique effectué. La représentation des phénomènes de dolomitisation de faible profondeur suivie d'une phase de dédolomitisation a été dans un premier temps effectuée. Le secteur concerne une portion de la série carbonatée de l'Urgonien (Barrémien-Aptien), localisée dans le massif du Vercors en France. Ce travail a été réalisé à l'échelle de la section afin de reproduire les géométries complexes associées aux phénomènes diagénétiques et de respecter les proportions mesurées en dolomite. De plus, la dolomitisation a été simulée selon trois modèles d'écoulement. En effet, la dédolomitisation étant omniprésente, plusieurs hypothèses sur le mécanisme de dolomitisation ont été énoncées et testées. Plusieurs phases de dolomitisation per ascensum ont été également simulées sur des séries du Lias appartenant aux formations du groupe des Calcaire Gris, localisées au nord-est de l'Italie. Ces fluides diagénétiques empruntent le réseau de fracturation comme vecteur et affectent préférentiellement les lithologies les plus micritisées. Cette étude a permis de mettre en évidence la propagation des phénomènes à l'échelle de l'affleurement. - Once deposited, sediment is affected by diagenetic processes during their burial history. These diagenetic processes are able to affect the petrophysical properties of the sedimentary rocks and also improve as such their reservoir capacity. The modelling of diagenetic processes in carbonate reservoirs is still a challenge as far as neither stochastic nor physicochemical simulations can correctly reproduce the complexity of features and the reservoir heterogeneity generated by these processes. An alternative way to reach this objective deals with process-like methods, which simplify the algorithms while preserving all geological concepts in the modelling process. The aim of the methodology is to conceive a consistent and realistic 3D model of diagenetic overprints on initial facies resulting in petrophysical properties at a reservoir scale. The principle of the method used here is related to a lattice gas automata used to mimic diagenetic fluid flows and to reproduce the diagenetic effects through the evolution of mineralogical composition and petrophysical properties. This method developed in a research group is well adapted to handle dolomite reservoirs through the propagation of dolomitising fluids and has been applied on two case studies. The first study concerns a mid-Cretaceous rudist and granular platform of carbonate succession (Urgonian Fm., Les Gorges du Nan, Vercors, SE France), in which several main diagenetic stages have been identified. The modelling in 2D is focused on dolomitisation followed by a dédolomitisation stage. For the second study, data collected from outcrops on the Venetian platform (Lias, Mont Compomolon NE Italy), in which several diagenetic stages have been identified. The main one is related to per ascensum dolomitisation along fractures. In both examples, the evolution of the effects of the mimetic diagenetic fluid on mineralogical composition can be followed through space and numerical time and help to understand the heterogeneity in reservoir properties. Carbonates, dolomitisation, dédolomitisation, process-like modelling, lattice gas automata, random walk, memory effect.
Resumo:
The present article examines the final part of the regnal formulas in the Book of Kings, i.e. the epilogue formulary. Most reports of the kings of Israel and Judah end with an epilogue containing formulaic statements about the death of the king and his succession. Typically, the epilogue formula is introduced by the phrase (source reference): 'Now the rest of the acts of PN1, are they not written in the Book of the Chronicles of the Kings of Judah (of the Chronicles of the Kings of Israel)?' and consists of three elements: 1. Dynastic notice ('PN1 slept with his fathers'); 2. Statement of burial; 3. Statement of succession. Sometimes one, two or all three of these elements are altered or lacking. The epilogue formulae of the Judean kings are more consistent than those of the Israelite kings; the latter often lacks a burial notice. Interestingly, the accounts of the deported (arrested) kings (Hoshea: 2 Kgs 17:6, Jehoahaz: 23:34, Zedekiah:25:7 and Jehoiachin: 25:27-30) do not contain an epilogue at all, nor the accounts of the reigns of Ahaziah and Athaliah which mark an episode of disruption in the history of the Davidic kingdom. For all these kings even the phrase 'Now the rest of the acts of PN1, are they not written in the Book of the Chronicles of... ?' is lacking. The absence of an epilogue in these cases is probably due to the fact that the king's succession (cf. element 3) is considered a constitutive and indispensable component of the epilogue. In the first instance, the approach of this study is descriptive and philological; it aims to contribute to the understanding of the notices. Secondly, the study addresses the question how the irregularities and variations within the formulae are to be explained. In particular, the study will pay attention to differences between the epilogue formulae concerning the kings of Israel and those concerning the Judean kings. At the end, questions concerning the epilogues formula's provenance and its formation date and concerning further redactional developments will be considered.
Resumo:
The story Numbers of 25 which reports the incident of Baal Peor is one among several texts in the book of Numbers focusing on divine wrath, its cause and its consequences. The present article offers a detailed analysis of the account which is difficult to understand because of certain jumps in the plot and because of its allusive style. Scholars mostly agree with the idea that the story grew in two or three stages. A lot of commentators believe that the original story contains only the apostasy of Peor caused by the Moabites (vv. 1-5). A subsequent story would focus on Pinchas' action against Zimri and Kospi, and a third layer is linked to the story of the war between Israel and Midian (Numbers 31). The problem of this theory however is that it seems impossible to reconstruct an original story about the matter of Peor; one does not find a satisfying end within vv. 1-5. Furthermore, v. 5, which belongs to the first, "Moabite", section, is already linked to the theme of Midian which dominates the second and the third passage. Moreover, the assemblage of different themes and motifs seem having been done with care: Regarding the two abuses of Israel reported in the story--idolatry and intermarriage--, they often go together in late polemical Deuteronomistic and post-Deuteronomistic layers (Ezra-Nehemiah). The double focus on Midian and Moab could both be polemically directed against certain Moses traditions found in the books of Exodus and Deuteronomy (concerning Moses' marriage with a Midianite women on the one hand and his stay and death and burial in Moab - in the vicinity of Beth Peor - on the other hand). As in several ANE traditions also in the Hebrew Bible the motif of "divine wrath" serves to interpret fatal historical events; in Num 25 as in other Biblical stories however it is doubtful whether the alleged incident (the plague) really have taken place and the story's plot is anchored in ancient Israel's history.
Resumo:
Abstract: This article deals with several presumed scribal interventions which all concern the sacred tree motif. One finds deliberate changes in the MT, in the Septuagint, in Targum Onkelos and in the Vulgate. The Greek translators of Genesis and Samuel (1-2 Kingdoms) avoided rendering the word אשׁל "tamarisk" by its equivalent μυρίκη, chosing instead the word ἄρουρα "field". Similarly, the Greek translator of Genesis, in the passage of the death of Rebecca's nurse Deborah, passed over the motif of her burial under a grand tree. According to the hypothesis of the present article, all four changes are related to one other; they might be due to the translator's fear to connect the respective texts with traditions and customs concerning the Egyptian god Osiris. On the other side, a scribe of the proto-Massoretic tradition modified the readings mentioning the large tree of Mamre close to Hebron. By changing the noun's number from singular to plural the corrector tried to conceal the existence and importance of the sacred tree in the tradition of Abraham. By contrast, the scribe did not modify texts related to the sacred tree of Shechem. This disparity of treatment may be explained by the fact that, in the view of the Judean scribe, the tree of Shechem would put the Samaritans in a bad light. Finally, the authors of Targum Onkelos and of the Vulgate intervened almost systematically in Pentateuchal texts having the terms אֵלוֹן) אלון or אַלּוֹן ), which always designate a holy tree. The two expressions are rendered by terms referring to plains (Targum Onkelos) or a valley (Vulgate).