167 resultados para B Lymphocytes
Resumo:
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) play an important role in the induction and maintenance of immune tolerance. Although adoptive transfer of bulk populations of Treg can prevent or treat T cell-mediated inflammatory diseases and transplant allograft rejection in animal models, optimal Treg immunotherapy in humans would ideally use antigen-specific rather than polyclonal Treg for greater specificity of regulation and avoidance of general suppression. However, no robust approaches have been reported for the generation of human antigen-specific Treg at a practical scale for clinical use. Here, we report a simple and cost-effective novel method to rapidly induce and expand large numbers of functional human alloantigen-specific Treg from antigenically naive precursors in vitro using allogeneic nontransformed B cells as stimulators. By this approach naive CD4(+)CD25(-) T cells could be expanded 8-fold into alloantigen-specific Treg after 3 weeks of culture without any exogenous cytokines. The induced alloantigen-specific Treg were CD45RO(+)CCR7(-) memory cells, and had a CD4(high), CD25(+), Foxp3(+), and CD62L (L-selectin)(+) phenotype. Although these CD4(high)CD25(+)Foxp3(+) alloantigen-specific Treg had no cytotoxic capacity, their suppressive function was cell-cell contact dependent and partially relied on cytotoxic T lymphocyte antigen-4 expression. This approach may accelerate the clinical application of Treg-based immunotherapy in transplantation and autoimmune diseases.
Resumo:
Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family, designated BAFF (for B cell activating factor belonging to the TNF family), which is expressed by T cells and dendritic cells. Human BAFF was mapped to chromosome 13q32-34. Membrane-bound BAFF was processed and secreted through the action of a protease whose specificity matches that of the furin family of proprotein convertases. The expression of BAFF receptor appeared to be restricted to B cells. Both membrane-bound and soluble BAFF induced proliferation of anti-immunoglobulin M-stimulated peripheral blood B lymphocytes. Moreover, increased amounts of immunoglobulins were found in supernatants of germinal center-like B cells costimulated with BAFF. These results suggest that BAFF plays an important role as costimulator of B cell proliferation and function.
Resumo:
The expression of Ia-associated human Invariant (In) chain glycoproteins was studied in the Raji B cells as well as in their RJ 2.2.5 Ia-negative derived variant cells by using a specific rabbit anti-human In chain antiserum. Two-dimensional gel electrophoresis of immunoprecipitates from either biosynthetically labeled or surface labeled cells were analyzed. In addition, flow microfluorometric analysis of stained cells was performed. The results indicate that the In chain is constitutively produced in the Ia-negative B cell variant. Moreover, it appears that several forms of In chain-related molecules, with different charges and distinct m.w. are equally expressed in Ia-positive and Ia-negative B cells. Finally, no evidence could be obtained that the In molecular family was expressed on the cell surface of Ia-positive Raji and Ia-negative RJ 2.2.5 cells.
Resumo:
BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.
Resumo:
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.
Resumo:
Treatment of B cell lymphoma patients with MoAbs specific for the common B cell marker (CD20) has shown a good overall response rate, but the number of complete remissions is still very low. The use of MoAbs coupled to radioisotopes can improve the results, but induces undesirable myelodepression. As an alternative, we proposed to combine the specificity of MoAbs with the immunogenicity of T cell epitopes. We have previously shown that an anti-Ig lambda MoAb coupled to an MHC class II-restricted universal T cell epitope peptide P2 derived from tetanus toxin induces efficient lysis of a human B cell lymphoma by a specific CD4+ T cell line. Here we demonstrate that the antigen presentation properties of the MoAb peptide conjugate are maintained using a MoAb directed against a common B cell marker, CD19, which is known to be co-internalized with the B cell immunoglobulin receptor. In addition, we provide evidence that B cell lysis is mediated by the Fas apoptosis pathway, since Fas (CD95), but not tumour necrosis factor receptor (TNFr) or TNF-related receptors, is expressed by the target B cells, and FasL, but not perforin, is expressed by the effector T cells. These results show that B cell lymphomas can be 'foreignized' by MoAb-peptide P2 conjugates directed against the common B cell marker CD19 and eliminated by peptide P2-specific CD4+ T cells, via the ubiquitous Fas receptor. This approach, which bridges the specificity of passive antibody therapy with an active T cell immune response, may be complementary to and more efficient than the present therapy results with unconjugated chimeric anti-CD20 MoAbs.
Resumo:
Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection: this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production.
Resumo:
The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in birds.
Resumo:
Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.
Resumo:
Tolerance against superantigens (SAgs) encoded by endogenous mouse mammary tumor virus (Mtv) loci involves the intrathymic deletion of SAg-reactive T cells expressing a particular TCR V beta-chain, presumably upon presentation of the SAg by specialized APC. However, although the role of dendritic cells (DC) in the induction of tolerance against conventional Ags has been demonstrated, little is known about the role played by DC in tolerance induction against Mtv SAgs. Moreover, there is conflicting evidence concerning the capacity of DC to express and present Mtv SAgs. In this report we have analyzed the expression of Mtv SAgs in highly purified thymic and splenic DC and B cells by reverse transcriptase-PCR, using primers amplifying Mtv SAg-specific spliced mRNAs. DC express Mtv SAgs at levels comparable to B cells, but display a differential expression pattern of the various Mtv loci compared with B cells. Furthermore, our results show that DC are able to induce the deletion of SAg-reactive thymocytes in an in vitro assay, indicating that Mtv SAgs are functionally expressed on the DC surface. Collectively, our data are consistent with the hypothesis that DC play a role in the induction of intrathymic tolerance to Mtv SAgs.
Resumo:
BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
Resumo:
Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.
Resumo:
For weeks after primary immunization with thymus-dependent antigens the responding lymph nodes contain effector CD4 T cells in T zones and germinal centers as well as recirculating memory T cells. Conversely, remote nodes, not exposed to antigen, only receive recirculating memory cells. We assessed whether lymph nodes with follicular effector CD4 T cells in addition to recirculating memory CD4 T cells mount a more rapid secondary response than nodes that only contain recirculating memory cells. Also, the extent to which T cell frequency governs accelerated CD4 T cell recall responses was tested. For this, secondary antibody responses to a superantigen, where the frequency of responding T cells is not increased at the time of challenge, were compared with those to conventional protein antigens. With both types of antigens similar accelerated responses were elicited in the node draining the site of primary immunization and in the contralateral node, not previously exposed to antigen. Thus recirculating memory cells are fully capable of mounting accelerated secondary responses, without the assistance of CD4 effector T cells, and accelerated memory responses are not solely dependent on higher T cell frequencies. Accelerated memory CD4 T cell responses were also seen in B cell-deficient mice.
Resumo:
B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.
Resumo:
Persistent infection induces an adaptive immune response that is mediated by T and B lymphocytes. Upon triggering with an antigen, these cells become activated and turn into fast expanding cells able to efficiently defend the host. Lymphocyte activation is controlled by a complex composed of CARMA1, BCL10 and MALT1 which regulates the NF-KB signaling pathway upon antigen triggering. Abnormally high expression or activity of either one of these three proteins can favor the development of lymphomas, while genetic defects in the pathway are associated with immunodeficiency. MALT1 was identified as a paracaspase sharing homology with other cysteine proteases, namely caspases and metacaspases. In order to be active, caspases need to dimerize. Based on their sequence similarity with MALT1, we hypothesized that dimerization might also be a mechanism of activation employed by MALT1. To address this assumption, we performed a bioinformatics modelling based on the crystal structures of several caspases. Our model suggested that the MALT1 caspase-like domain can indeed form dimers. This finding was later confirmed by several published crystal structures of MALT1. In the dimer interface of our model, we noticed the presence of charged amino acids that could potentially form salt bridges and thereby hold both monomers together. Mutation of one of these residues, E549, into alanine completely blocked the catalytic activity of MALT1. Additionally, we provided evidence for a role of E549 in promoting the MALTl-dependent growth of cells derived from diffuse large B cell lymphoma (DLBCL) of the aggressive B cell-like type (ABC). To our initial surprise, the E549A mutation showed only a partial defect in dimerization, indicating that additional residues are essential to form a stable dimer. The MALT1 crystal structures revealed a key function for E549 in stabilizing the catalytic site of the protease via its interaction with an arginine which is located next to the catalytic active cysteine. In an additional study, we discovered that MALT1 monoubiquitination is required for the catalytic activity of the protease. Interestingly, we found that the MALT1 dimer interface mutant E549A could not be monoubiquitinated. Based on these findings, we suggest that correct formation of the dimer interface is a prerequisite for monoubiquitination. In a second project, we discovered a novel target of the protease MALT1, the ribonuclease Regnase¬la It was described that the RNase activity of Regnase-1 negatively regulates immune responses. We could show that in ABC DLBCL cell lines, Regnase-1 is not only cleaved by MALT1 but also phosphorylated, at least in part, by the inhibitor of KB kinase (IKK). Both regulations appear to restrain the RNase function of Regnase-1 and thereby allow the production of pro-survival proteins. In conclusion, our studies further highlight and explain the importance of the catalytic activity of MALT1 for the activation of lymphocytes and provide additional knowledge for the development of specific drugs targeting the catalytic activity of MALT1 for immunomodulation and treatment of lymphomas. SUMMARY IN FRENCH PhD Thesis Katrin Cabalzar 2 SUMMARY IN FRENCH Une infection persistante induit une réponse immunitaire adaptative par l'intermédiaire des lymphocytes T et B. Quand elles reconnaissent l'antigène, ces cellules sont activées et se multiplient très rapidement pour défendre efficacement l'hôte. L'activation des lymphocytes est transmise par un complexe composé de trois protéines, CARMA1, BCL10 et MALT1, qui régule la voie de signalisation NF-KB lorsque l'antigène est reconnu. L'expression ou l'activité anormalement élevée de l'une de ces trois protéines peut favoriser le développement de lymphomes, tandis que des défauts génétiques de cette voie de signalisation sont associés à l'immunodéficience. MALT1 a été identifiée comme étant une paracaspase qui partage des séquences homologues avec d'autres protéases à cystéine, comme les caspases et les métacaspases. Pour être actives, les caspases ont besoin de dimériser. Etant donné leur similarité de séquence avec MALT1, nous avons supposé que la dimérisation pouvait aussi être un mécanisme d'activation utilisé par MALT1. Pour vérifier cette hypothèse, nous avons conçu un modèle bioinformatique à partir des structures cristallographiques de plusieurs caspases. Et notre modèle a suggéré que le domaine catalytique de MALT1 était effectivement capable de former des dimères. Cette découverte a été confirmée plus tard par des publications qui montrent des structures cristallographiques dimériques de MALT1. Dans l'interface du dimère de notre modèle, nous avons remarqué la présence d'acides aminés chargés qui pouvaient former des liaisons ioniques et ainsi réunir les deux monomères. La mutation de l'un de ces résidus, E549, pour une alanine, a complètement inhibé l'activité catalytique de MALT1. De plus, nous avons mis en évidence un rôle d'E549 dans la croissance dépendante de MALT1, des cellules dérivées de lymphomes B diffus à grandes cellules (DLBCL) de sous-type cellules B actives (ABC). Dans un premier temps nous avons été surpris de constater que cette mutation révélait seulement un défaut partiel de dimérisation, ce qui indique que des acides aminés supplémentaires sont indispensables pour former un dimère stable. Les structures cristallographiques de MALT1 ont révélé un rôle primordial d'E549 dans la stabilisation du site catalytique de la protéase via son interaction avec une arginine qui se trouve à côté de la cystéine du site actif. Dans une autre étude, nous avons découvert que la monoubiquitination de MALT1 est requise pour l'activité catalytique de la protéase. A remarquer que nous avons trouvé que le mutant E549A de l'interface dimère de MALT1 n'a pas pu être monoubiquitiné. Sur la base de ces résultats, nous suggérons que la formation correcte de l'interface du dimère est une condition préalable pour la monoubiquitination. Dans un second projet, nous avons découvert une nouvelle cible de la protéase MALT1, la ribonucléase Regnase-1. Il a été décrit que l'activité RNase de Regnase-1 régulait négativement les réponses immunitaires. Nous avons pu montrer que dans les lignées cellulaires ABC DLBCL, la Regnase-1 n'était pas seulement clivée par MALT1 mais également phosphorylée, au moins en partie, par la kinase de l'inhibiteur de KB (IKK). Les deux régulations semblent supprimer la fonction RNase de Regnase-1 et permettre ainsi la stabilisation de certains ARN messagers et la production de protéines favorisant la survie. En conclusion, nos études mettent en évidence le rôle-clé de la dimérisation de MALT1 et expliquent l'importance de l'activité catalytique de MALT1 pour l'activation des lymphocytes. Ainsi, nos résultats apportent des connaissances supplémentaires pour le développement de médicaments spécifiques ciblant l'activité catalytique de MALT1, qui pourraient être utiles pour modifier les réponses immunitaires et traiter des lymphomes.