21 resultados para Austrian Alps
Resumo:
Pleistocene glacial and interglacial periods have moulded the evolutionary history of European cold-adapted organisms. The role of the different mountain massifs has, however, not been accurately investigated in the case of high-altitude insect species. Here, we focus on three closely related species of non-flying leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae), which are often found in sympatry within the mountain ranges of Europe. After showing that the species concept as currently applied does not match barcoding results, we show, based on more than 700 sequences from one nuclear and three mitochondrial genes, the role of biogeography in shaping the phylogenetic hypothesis. Dating the phylogeny using an insect molecular clock, we show that the earliest lineages diverged more than 1 Mya and that the main shift in diversification rate occurred between 0.36 and 0.18 Mya. By using a probabilistic approach on the parsimony-based dispersal/vicariance framework (MP-DIVA) as well as a direct likelihood method of state change optimization, we show that the Alps acted as a cross-roads with multiple events of dispersal to and reinvasion from neighbouring mountains. However, the relative importance of vicariance vs. dispersal events on the process of rapid diversification remains difficult to evaluate because of a bias towards overestimation of vicariance in the DIVA algorithm. Parallels are drawn with recent studies of cold-adapted species, although our study reveals novel patterns in diversity and genetic links between European mountains, and highlights the importance of neglected regions, such as the Jura and the Balkanic range.
Resumo:
Questions: A multiple plot design was developed for permanent vegetation plots. How reliable are the different methods used in this design and which changes can we measure? Location: Alpine meadows (2430 m a.s.l.) in the Swiss Alps. Methods: Four inventories were obtained from 40 m(2) plots: four subplots (0.4 m(2)) with a list of species, two 10m transects with the point method (50 points on each), one subplot (4 m2) with a list of species and visual cover estimates as a percentage and the complete plot (40 m(2)) with a list of species and visual estimates in classes. This design was tested by five to seven experienced botanists in three plots. Results: Whatever the sampling size, only 45-63% of the species were seen by all the observers. However, the majority of the overlooked species had cover < 0.1%. Pairs of observers overlooked 10-20% less species than single observers. The point method was the best method for cover estimate, but it took much longer than visual cover estimates, and 100 points allowed for the monitoring of only a very limited number of species. The visual estimate as a percentage was more precise than classes. Working in pairs did not improve the estimates, but one botanist repeating the survey is more reliable than a succession of different observers. Conclusion: Lists of species are insufficient for monitoring. It is necessary to add cover estimates to allow for subsequent interpretations in spite of the overlooked species. The choice of the method depends on the available resources: the point method is time consuming but gives precise data for a limited number of species, while visual estimates are quick but allow for recording only large changes in cover. Constant pairs of observers improve the reliability of the records.
Resumo:
Objective: To assess if screening programs and treatment of preoperative malnutrition have been implemented into surgical practice to decrease morbidity. There is strong evidence that postoperative morbidity can be minimized by early identifying and treating patients at nutritional risk before major surgery.The validated nutritional risk score (NRS) is recommended by the European Society of Parenteral and Enteral Nutrition for nutritional screening. It remains unclear whether routine preoperative nutritional assessment and perioperative nutrition is widely implemented.Methods: A survey was conducted in 173 Swiss and Austrian surgical departments. Implementation of nutritional screening, perioperative nutrition, and estimated impact on clinical outcome were assessed. Non-responders were repeatedly contacted by the authors.Results: The overall response rate was 55%, whereby 69% (54/78) of Swiss and 44% (42/95) of Austrian centers responded. Despite 80% and 59% of the responding centers are aware of a reduced complication rate and shortened hospital stay, respectively, only 20% of them implemented routine nutritional screening. Financial (49%) and logistic restrictions (33%) are the predominant reasons against the routine clinical use. Screening is mainly performed either in the outpatient's clinic (52%) or during admission (54%). The NRS is only used by 14%. Instead, various clinical (78%), e.g. BMI and laboratory findings (56%), e.g. albumine, are used. Indication for perioperative nutrition is based on preoperative screening in 49%.While 23% use preoperative nutrition, 68% apply nutritional support pre- and postoperatively. Preoperative nutritional treatment ranged from three days (33%), to five days (31%) and even seven days (20%).Conclusion: Despite malnutrition is well recognized as major risk factor for increased postoperative morbidity, the majority of surgeons are reluctant to implement routine screening and nutritional support. If nutritional assessment is performed, local institutional screening parameters are still preferred. It remains difficult to overcome traditions, and to change surgeon's mind.
Resumo:
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
This study aims to explore the relationships that can be established between identity tensions affecting a learner of French in an alloglotte context, its investment in the appropriation of the language and the contacts that can be established with the target language, the latter constituting a necessary mediation for a successful appropria tion. The empirical analysis is based on data concerning an Austrian living in French-speaking Switzerland and taking courses in an academic context.