170 resultados para Angiotensin receptor subtype
Resumo:
Angiotensin II can raise blood pressure rapidly by inducing direct vasoconstriction and by activating the sympathetic nervous system via central and peripheral mechanisms. In addition, this peptide may act as a growth factor to cause vascular and cardiac hypertrophy (CVH). The structural changes caused by hypertension can therefore be amplified by angiotensin II. Blockade of angiotensin II generation with angiotensin-converting enzyme (ACE) inhibitors appears to be particularly effective in preventing the development of cardiovascular hypertrophy. This beneficial effect might be related to some extent to local accumulation of bradykinin. ACE is one of the enzymes physiologically involved in bradykinin degradation. Treatment of hypertensive rats with a selective bradykinin antagonist can attenuate the blood pressure-lowering effect of ACE inhibition and render less effective the prevention of intimal thickening after endothelial removal from the rat carotid artery. Bradykinin is a vasodilator that acts by increasing the release of endothelium-derived factors such as nitric oxide and prostacyclin, which may have antiproliferative activity. However, blockade of the renin-angiotensin system with an angiotensin II subtype 1-receptor antagonist is also effective in preventing cardiac hypertrophy and neointimal proliferation after endothelial injury. Therefore, the exact contribution of bradykinin to the beneficial effects of ACE inhibition on cardiovascular hypertrophy remains to be further explored.
Resumo:
Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.
Resumo:
Neuropeptide Y (NPY) is a potent inhibitor of neurotransmitter release through the Y2 receptor subtype. Specific antagonists for the Y2 receptors have not yet been described. Based on the concept of template-assembled synthetic proteins we have used a cyclic template molecule containing two beta-turn mimetics for covalent attachment of four COOH-terminal fragments RQRYNH2 (NPY 33-36), termed T4-[NPY(33-36)]4. This structurally defined template-assembled synthetic protein has been tested for binding using SK-N-MC and LN319 cell lines that express the Y1 and Y2 receptor, respectively. T4-[NPY(33-36)]4 binds to the Y2 receptor with high affinity (IC50 = 67.2 nM) and has poor binding to the Y1 receptor. This peptidomimetic tested on LN319 cells at concentrations up to 10 microM shows no inhibitory effect on forskolin-stimulated cAMP levels (IC50 for NPY = 2.5 nM). Furthermore, we used confocal microscopy to examine the NPY-induced increase in intracellular calcium in single LN319 cells. Preincubation of the cells with T4-[NPY(33-36)]4 shifted to the right the dose-response curves for intracellular mobilization of calcium induced by NPY at concentrations ranging from 0.1 nM to 10 microM. Finally, we assessed the competitive antagonistic properties of T4-[NPY(33-36)]4 at presynaptic peptidergic Y2 receptors modulating noradrenaline release. the compound T4-[NPY(33-36)]4 caused a marked shift to the right of the concentration-response curve of NPY 13-36, a Y2-selective fragment, yielding a pA2 value of 8.48. Thus, to our best knowledge, T4-[NPY(33-36)]4 represents the first potent and selective Y2 antagonist.
Resumo:
ABSTRACT: BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Resumo:
OBJECTIVES: To evaluate the role of endothelin-1 (ET-1) in hypertension, we investigated density and distribution of ETA and ETB receptors in hearts and kidneys of deoxycorticosterone acetate (DOCA)-salt and 1 kidney -- 1 clip (1K1C) hypertensive rats. METHODS: Five groups of uninephrectomized Wistar rats were put on a low salt diet. Three groups of rats drank tap water and two groups received saline. One group of each regimen received DOCA subcutaneously and two corresponding groups without DOCA served as controls. The fifth group of rats had the renal artery clipped to induce 1K1C hypertension. At 6 weeks, mean arterial pressure (MAP) was recorded and membrane binding assays using 125I-ET-1 were carried out. RESULTS: MAP was increased from control 122 +/- 3 to 155 +/- 6 and 218 +/- 11 mmHg in DOCA-salt and 1K1C rats, respectively, and cardiac weight index was increased. ETA receptors were predominantly expressed in the heart, whereas ETB receptors were predominant in the kidney. In the kidneys, the density of the ETB receptor subtype was upregulated in DOCA-salt and 1K1C rats from 160 +/- 8 to 217 +/- 12 and 190 +/- 2 fmol/mg (P < 0.05), respectively, and ETA tended to be downregulated (P = 0.057). Plasma renin activity was decreased in DOCA-salt rats from 17 +/- 3 to 0.17 +/- 0.01 ng/ml per h and increased in 1K1C rats on low salt diet to 30 +/- 5 ng/ml per h. CONCLUSIONS: Since ETB is the predominant endothelin receptor in the kidneys, upregulation of the ETB receptor mediating vasodilation and downregulation of the ETA receptor mediating vasoconstriction would be compatible with a mainly renal counter-regulatory effect of endothelin-1 to hypertension. Both low and high renin models of hypertension may be affected.
Resumo:
OBJECTIVES: We investigated the influence of angiotensin receptor blockade and angiotensin-converting enzyme inhibition on stress-induced platelet activation in hypertensive patients. Secondary aims were effects on inflammation, coagulation, and endothelial function. METHODS: Following a 4-week placebo period, 25 hypertensive patients entered a double-blind, crossover study comparing enalapril (20 mg once daily) and losartan (100 mg once daily) treatment (each for 8 weeks). Patients were studied at rest and after a standardized exercise test. RESULTS: Mean arterial pressure was reduced from 119 ± 2 to 104 ± 2 (enalapril) and 106 ± 2 (losartan) mmHg (both P <0.001). Plasma angiotensin II decreased from 2.4 ± 0.4 to 0.5 ± 0.1 pmol/l with enalapril, and increased to 7.2 ± 1.3 pmol/l with losartan (both P <0.001). Exercise-evoked platelet activation, as evidenced by increased numbers of P-selectin-positive platelets (P <0.01), elevated circulating platelet-platelet aggregates (P <0.01) and soluble P-selectin levels (P <0.001), and increased platelet responsiveness to adenosine diphosphate and thrombin (both P <0.05). Neither drug influenced these markers of platelet activation at rest or following exercise. Markers of inflammation (high-sensitivity C reactive protein, interleukin-6, tissue necrosis factor-α), coagulation (tissue plasminogen activator antigen, prothrombin fragment F1+2), and endothelial function (von Willebrand factor, soluble vascular cellular adhesion molecule-1, and intercellular adhesion molecule-1) were also uninfluenced by treatment. CONCLUSION: Enalapril and losartan failed to reduce platelet activity both at rest and during exercise in hypertensive patients. Markers of inflammation, coagulation, and endothelial function were similarly unaffected. Inhibition of the renin-angiotensin system promotes its beneficial effects in hypertension through mechanisms other than platelet inhibition.
Resumo:
1. The availability of orally active specific angiotensin receptor antagonists (AT1 antagonists) has opened new therapeutic choices and provided probes to test the specific role of the renin-angiotensin system in the pathogenesis of cardiovascular disease. 2. The data available so far suggest that the antihypertensive efficacy of angiotensin receptor antagonists is comparable to that of angiotensin-converting enzyme (ACE) inhibitors. This provides further evidence that this latter class of drugs exerts its effect mainly through blockade of the renin-angiotensin enzymatic cascade. As expected, the association of a diuretic exerts an equally strong additive effect to the antihypertensive efficacy of both classes of drugs. 3. The most common side effect of ACE inhibitors, dry cough, does not occur with AT1 antagonists, which confirms the long-held view that this untoward effect of the ACE inhibitors is due to renin-angiotensin-independent mechanisms. 4. Long-term studies with morbidity/mortality outcome results are needed, before a definite position can be assigned to this newcomer in the orchestra of modern antihypertensive drugs. Notwithstanding, this new class of agents already represents an exciting new addition to our therapeutic armamentarium.
Resumo:
The prevalence of complicated hypertension is increasing in America and Europe. This survey was undertaken to assess the status quo of primary care management of hypertension in patients with the high-risk comorbid diseases metabolic syndrome (MetS) and/or type 2 diabetes mellitus (non-insulin depending diabetes mellitus (NIDDM)). Data of anti-hypertensive treatment of 4594 Swiss patients were collected over 1 week. We identified patients with exclusively NIDDM (N = 95), MetS (N = 168), and both (N = 768). Target blood pressure (TBP) attainment, frequency of prescribed substance-classes, and correlations to comorbidities/end-organ damages were assessed. In addition, we analyzed the prescription of unfavorable beta-blockers (BB) and high-dose diuretics (Ds). In NIDDM, Ds (61%), angiotensin receptor blockers (ARBs) (40%), and angiotensin converting enzyme inhibitors (ACEIs) (31%) were mostly prescribed, while in MetS, drugs prevalence was Ds (68%), ARBs (48%), and BB (41%). Polypharmacy in patients with MetS correlated with body mass index; older patients (>65 years) were more likely to receive dual-free combinations. TBP was attained in 25.2% of NIDDM and in 28.7% of MetS patients. In general, low-dose Ds use was more prevalent in NIDDM and MetS, however, overall, Ds were used excessively (NIDDM: 61%, MetS: 68%), especially in single-pill combination. Patients with MetS were more likely to receive ARBs, ACEIs, CCBs, and low-dose Ds than BBs and/or high-dose Ds. Physicians recognize DM and MetS as high-risk patients, but select inappropriate drugs. Because the majority of patients may have both, MetS and NIDDM, there is an unmet need to define TBP for this specific population considering the increased risk in comparison to patients with MetS or NIDDM alone.
Resumo:
Cardiovascular and chronic kidney disease are epidemic throughout industrialized societies. Diabetes leads to premature cardiovascular disease and is regarded by many as the most common etiological factor for chronic kidney disease. Because most studies of blood-pressure lowering agents in people with diabetes and hypertension have been conducted in individuals who already have some target organ damage, it is unclear whether earlier intervention could prevent or delay the onset of renal or systemic vascular disease. In early disease there is only a low possibility of observing cardiovascular or renal events; thus intervention trials in this population must rely on disease markers such as microalbuminuria. Accordingly, the authors review the evidence to support the use of microalbuminuria as a disease marker in diabetic patients based on its strong association with renal and cardiovascular events, and discuss recent trials that examine the impact of preventing or delaying the onset of microalbuminuria.
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
Background There are only a few trials for the very elderly population (>79 years). No consensus, which blood pressure (BP) goals and substances should be applied, has been found yet. This survey was undertaken to investigate how octogenarians are treated and attain BP targets in the Swiss primary care. Methods Data from 4594 hypertensive patients were collected within 7 days. Eight hundred and seventy-seven patients met the requirement to be >79 years. We assessed substances/combinations and investigated pulse pressure and target blood pressure attainment (TBPA) using three different recommendations [Canadian Hypertension Education Program (CHEP), Swiss Society of Hypertension (SSH), European Society of Hypertension-European Society of Cardiology (ESH-ESC)]. Secondarily, we compared TBPA attained by angiotensin-converting enzyme inhibitor (ACEI)/diuretic (D), angiotensin receptor blocker (ARB)/D and calcium channel blocker (CCB)/D with any other dual therapy and investigated whether Ds/beta-blockers (BBs) or Ds/renin angiotensin-converting enzyme inhibitors (RAAS-Is) lead to higher TBPA. Finally, we assessed the impact of drug administration, practical work experience, location and specialization of GPs on TBPA. Results Octogenarians attained target blood pressure (TBP) between 44% (ESH-ESC) and 74% (SSH). Optimal/normal BP was reached in 22.8% of patients. Pulse pressure <65 mmHg was shown in 66.4% of patients. Monotherapy was most commonly applied followed by dual single-pill combination with ARB/D (46.5%) or ACEI/D (36.0%). No benefit in TBPA was found comparing a RAASI/D and CCB/D treatment with any other dual combination. There was also no difference between BB/D and RAAS-I/D combination therapy and between single-pill combination and dual free combinations. Conclusions GPs adhere to the use of substances proven in outcome trials and attain high TBP. No difference in meeting BP goals could be found using different drug classes. There is an unmet need to harmonize recommendations and to add additional information for the treatment of octogenarians.