111 resultados para Anemia Ferropriva
Resumo:
Should we treat iron deficiency without anemia? The simple fact that the question can be formulated already leads to controversies. During the past years, the development of a new formulation of intravenous iron has helped fuel the controversy. What is the situation in 2012? This article gives a practical point of view on the actual situation and provides indications on the use of new intravenous medications.
Resumo:
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Resumo:
PURPOSE: To report the sudden onset of reversible Charles Bonnet syndrome precipitated byacute severe anemia. METHODS: The charts of three patients (Usher syndrome, bilateral macular degeneration, and bilateral retinal vein occlusion) with acute Charles Bonnet syndrome in the setting of severe anemia were reviewed. RESULTS: Anemia resulted from bladder surgery, recto-colitis, and severe urinary tract infection. Hemoglobin ranged from 78 to 86 g/L. Decreased visual acuity and formed visual hallucinations (giants, flowers, animals) were present in all three patients. Rapid reversal of Charles Bonnet syndrome and visual acuity improvement followed blood transfusion. CONCLUSIONS: Acute severe anemia can precipitate Charles Bonnet syndrome, which may be reversible by blood transfusion.
Resumo:
Background: Colonoscopy is usually proposed for the evaluation of lower gastrointestinal blood loss (hematochezia) or iron deficiency anemia (IDA). Clinical practice guidelines support this approach but formal evidence is lacking. Real clinical scenarios made available on the web would be of great help in decision-making in clinical practice as to whether colonoscopy is appropriate for a given patient. Method: A multidisciplinary multinational expert panel (EPAGE II) developed appropriateness criteria based on best published evidence (systematic reviews, clinical trials, guidelines) and experts' judgement. Using the explicit RAND Appropriateness Method (3 round of experts' votes and a panel meeting) 102 clinical scenarios were judged inappropriate, uncertain, appropriate, or necessary. Results: In IDA, colonoscopy was appropriate in patients >50 years and necessary in the presence of lower abdominal symptoms. In both men and women aged <50 years, colonoscopy was appropriate if prior sigmoidoscopy and/or gastroscopy did not explain the IDA, and necessary if lower gastrointestinal symptoms were present. In women <50 years with a potential gynecological cause, additional lower gastrointestinal symptoms rendered colonoscopy appropriate. In patients >50 years with hematochezia, colonoscopy was always appropriate and mostly necessary, except if a prior colonoscopy was normal within the previous 5 years. Under age 50 years, the presence of any risk factor for colorectal cancer (CRC) and no previous normal colonoscopy (within the last 5 years) made this procedure appropriate and necessary. Conclusion: Colonoscopy is appropriate and even necessary for many indications related to iron deficiency anemia or hematochezia, in particular in patients aged >50 years. The main factors influencing appropriateness are age, results of prior investigations (sigmoidoscopy, gastroscopy, previous colonoscopy), CRC risk and sex. EPAGE II appropriateness criteria are available on www.epage.ch
Resumo:
BACKGROUND AND STUDY AIMS: To summarize the published literature on assessment of appropriateness of colonoscopy for the investigation of iron-deficiency anemia (IDA) and hematochezia, and report appropriateness criteria developed by an expert panel, the 2008 European Panel on the Appropriateness of Gastrointestinal Endoscopy, EPAGE II. METHODS: A systematic search of guidelines, systematic reviews and primary studies regarding the evaluation and management of IDA and hematochezia was performed. The RAND/UCLA Appropriateness Method was applied to develop appropriateness criteria for colonoscopy for these conditions. RESULTS: IDA occurs in 2 %-5 % of adult men and postmenopausal women. Examination of both the upper and lower gastrointestinal tract is recommended in patients with iron deficiency. Colonoscopy for IDA yields one colorectal cancer (CRC) in every 9-13 colonoscopies. Hematochezia is a well-recognized alarm symptom and such patients are likely to be referred for colonoscopy. Colonoscopy is unanimously recommended in patients aged > or = 50. Diverticulosis, vascular ectasias, and ischemic colitis are common causes of acute lower gastrointestinal bleeding (LGIB); CRC is found in 0.2 %-11 % of the colonoscopies performed for LGIB. Most patients with scant hematochezia have an anorectal or a distal source of bleeding. The expert panel considered most clinical indications for colonoscopy as appropriate in the presence of IDA (58 %) or hematochezia (83 %). CONCLUSION: Despite the limitations of the published studies, guidelines unanimously recommend colonoscopy for the investigation of IDA and hematochezia in patients aged > or = 50 years. These indications were also considered appropriate by EPAGE II, as were indications in patients at low risk for CRC with no obvious cause of bleeding found during adequate previous investigations.
Resumo:
BACKGROUND: Chronic kidney disease (CKD) is associated to a higher stroke risk. Anemia is a common consequence of CKD, and is also a possible risk factor for cerebrovascular diseases. The purpose of this study was to examine if anemia and CKD are independent risk factors for mortality after stroke. METHODS: This historic cohort study was based on a stroke registry and included patients treated for a first clinical stroke in the stroke unit of one academic hospital over a three-year period. Mortality predictors comprised demographic characteristics, CKD, glomerular filtration rate (GFR), anemia and other stroke risk factors. GFR was estimated by means of the simplified Modification of Diet in Renal Disease formula. Renal function was assessed according to the Kidney Disease Outcomes Quality Initiative (K/DOQI)-CKD classification in five groups. A value of hemoglobin < 120 g/L in women and < 130 g/L in men on admission defined anemia. Kaplan-Meier survival curves and Cox models were used to describe and analyze one-year survival. RESULTS: Among 890 adult stroke patients, the mean (Standard Deviation) calculated GFR was 64.3 (17.8) ml/min/1.73 m2 and 17% had anemia. Eighty-two (10%) patients died during the first year after discharge. Among those, 50 (61%) had K/DOQI CKD stages 3 to 5 and 32 (39%) stages 1 or 2 (p < 0.001). Anemia was associated with an increased risk of death one year after discharge (p < 0.001). After adjustment for other factors, a higher hemoglobin level was independently associated with decreased mortality one year after discharge [hazard ratio (95% CI) 0.98 (0.97-1.00)]. CONCLUSIONS: Both CKD and anemia are frequent among stroke patients and are potential risk factors for decreased one-year survival. The inclusion of patients with a first-ever clinical stroke only and the determination of anemia based on one single measure, on admission, constitute limitations to the external validity. We should investigate if an early detection and management of both CKD and anemia could improve survival in stroke patients.
Resumo:
Autoantibodies against red blood cell antigens are considered the diagnostic hallmark of AIHA: Direct antiglobulin test (DAT) completed by cytofluorometry and specific diagnostic monoclonal antibodies (mAbs) allow for a better understanding of autoimmune hemolytic anemia (AIHA) triggers. Once B-cell tolerance checkpoints are bypassed, the patient loses self-tolerance, if the AIHA is not also caused by an possible variety of secondary pathogenic events such as viral, neoplastic and underlying autoimmune entities, such as SLE or post-transplantation drawbacks; treatment of underlying diseases in secondary AIHA guides ways to curative AIHA treatment. The acute phase of AIHA, often lethal in former times, if readily diagnosed, must be treated using plasma exchange, extracorporeal immunoadsorption and/or RBC transfusion with donor RBCs devoid of the auto-antibody target antigen. Genotyping blood groups (www.bloodgen.com) and narrowing down the blood type subspecificities with diagnostic mAbs help to define the triggering autoantigen and to select well compatible donor RBC concentrates, which thus escape recognition by the autoantibodies.
Resumo:
RÉSUMÉ: Le génome de toute cellule est susceptible d'être attaqué par des agents endogènes et exogènes. Afin de préserver l'intégrité génomique, les cellules ont développé des multitudes de mécanismes. La réplication de l'ADN, une étape importante durant le cycle cellulaire, constitue un stress et présente un danger important pour l'intégrité du génome. L'anémie de Fanconi est une maladie héréditaire rare dont les protéines impliquées semblent jouer un rôle crucial dans la réponse au stress réplicatif. La maladie est associée à une instabilité chromosomique ainsi qu'à une forte probabilité de développer des cancers. Les cellules des patients souffrant de l'anémie de Fanconi sont sensibles à des agents interférant avec la réplication de l'ADN, et plus particulièrement àdes agents qui fient les deux brins d'ADN d'une manière covalente. L'anémie de Fanconi est une maladie génétiquement hétérogène. Treize protéines ont pu être identifiées. Elles semblent figurer dans une même voie de signalisation qui est aussi connue sous le nom de « FA/BRCA pathway », car un des gènes est identique au gène BRCA2 (breast cancer susceptibility gene 2). Huit protéines forment un complexe nucléaire dont l'intégrité est nécessaire à la monoubiquitination de deux autres protéines, FANCD2 et FANCI, en réponse à un stress réplicatif. A ce jour, la fonction moléculaire des protéines du « FA/BRCA pathway »reste encore mal décrite. Au début de mon travail de thèse, nous avons donc décidé de purifier les protéines du complexe nucléaire et d'étudier leurs propriétés biochimiques. Nous avons tout d'abord étudié les cinq protéines connues à l'époque qui sont FANCA, FANCC, FANCE, FANCF et FANCG. Par la suite, nous avons étendu notre étude à des protéines découvertes plus récemment, FANCL, FANCM et FAAP24, en concentrant finalement notre travail sur la caractérisation de FANCM. FANCM, contrairement aux autres protéines du complexe, est constituée de deux domaines conservés suggérant un rôle important dans le métabolisme de l'ADN. Il s'agit d'un domaine « DEAH box hélicase »situé dans la partie N-terminale et d'un domaine « ERCC4 nuclease »situé dans la partie C-terminale de la protéine. Dans cette étude, nous avons purifié avec succès la protéine FANCM entière à partir d'un système hétérologue. Nous montrons que FANCM s'attache de manière spécifique à des jonctions de Holliday et des fourches de réplication. De plus, nous démontrons que FANCM peut déplacer le point de jonction de ces structures via son domaine hélicase de manière dépendante de l'ATP. FANCM est aussi capable de dissocier de grands intermédiaires de la recombinaison, via la migration de jonctions de Holliday à travers une région d'homologie de 2.6 kb. Tous ces résultats suggèrent que FANCM peut s'attacher spécifiquement à des fourches de réplication et à des jonctions de Holliday in vitro et que son domaine hélicase est associé à une activité migratoire efficace. Nous pensons que FANCM peut avoir un rôle direct sur les intermédiaires de réplication. Ceci est en accord avec l'idée que les protéines de l'anémie de Fanconi coordonnent la réparation de l'ADN au niveau des fourches de réplication arrêtées. Nos résultats donnent une première indication quant au rôle de FANCM dans la cellule et peuvent contribuer à élucider la fonction de cette voie de signalisation peu comprise jusqu'à présent. SUMMARY: The genome of every cell is subject to a constant offence by endogenous and exogenous agents. Not surprisingly; cells have evolved a multitude of mechanisms which aim at preserving genomic integrity. A key step during the life cycle of a cell, DNA replication itself, constitutes a special danger to the integrity of the genome. The proteins defective in the rare hereditary disease Fanconi anemia (FA) are suspected to play a crucial role in the cellular response to DNA replication stress. The disease is associated with chromosomal instability and pronounced cancer susceptibility. Cells from Fanconi anemia patients are sensitive to a variety of agents which interfere with DNA replication, DNA interstrand cross-linking agents being particularly threatening to their survival. Fanconi anemia is a genetically heterogeneous disease with 13 different proteins identified, which seem to work together in a common pathway. Since one of the FA genes is identical to the breast cancer susceptibility gene BRCA2, it is also referred to as the FA/BRCA pathway. Eight proteins form a nuclear complex, whose integriry is required for the monoubiquitination of two other FA proteins, FANCD2 and FANCI, in response to DNA replication stress. Despite intensive research, the function of the FA/BRCA pathway at a molecular level has remained largely elusive so far. At the beginning of my thesis, we therefore decided to purify the proteins of the FA core complex and to investigate their biochemical properties. We started with the five proteins which were known at that time, FANCA, FANCC, FANCE, FANCF, and FACG. Later on, we extended our studies to the newly discovered proteins FANCL, FANCM, and FAAP24, and eventually focused our work on the characterisation of FANCM. In contrast to the other core complex proteins, FANCM contains two conserved domains, which point to a role in DNA metabolism: an N-terminal DEAH box helicase domain and a C-terminal ERCC4 nuclease domain. In this study, we have successfully purified full-length FANCM from a recombinant source. We show that purified FANCM binds to branched DNA molecules, such as Holliday junctions and replication forks, with high specificity and affinity. In addition, we demonstrate that FANCM can translocate the junction point of branched DNA molecules due to its helicase domain in an ATPase-dependent manner. FANCM can even dissociate large recombination intermediates, via branch migration of Holliday junctions through a 2.6 kb region of homology. Taken together, our data suggest that FANCM can specifically bind to replication forks and Holliday junctions in vitro, and that its DEAH box helicase domain is associated with a potent branch migration activity. We propose that FANCM might have a direct role in the processing of DNA replication intermediates. This is consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks. Our findings provide a first hint as to the context in which FANCM might play a role in the cell. We are optimistic that they might be key to further elucidate the function of a pathway which is far from being understood.
Resumo:
We investigated the role that erythroviruses (parvovirus B19 and erythrovirus genotypes 2 and 3) play in the lives of immunosuppressed HIV-infected patients with chronic anemia. We screened the serum samples of 428 patients by specific ultrasensitive real-time polymerase chain reaction assay. Sixteen patients had circulating DNA, with no apparent clinical impact. Erythrovirus-associated anemia is an extremely rare event in HIV-infected patients.
Resumo:
ous discutons le cas d'une femme de 58 ans qui présente une asthénie progressive et une dyspnée ainsi que des paresthésies des membres. On découvre une pancytopénie avec des neutrophiles hypersegmentés, une anémie macrocytaire hyporégénérative et des éléments d'hémolyse (forte augmentation des LDH). Cette constellation doit faire suspecter une carence en vitamine B12 qui est confirmée chez notre patiente par un dosage de la cobalamine indétectable. Le bilan étiologique montre des anticorps anti-cellules pariétales gastriques positifs à 1/640, diagnostiques d'une maladie de Biermer. A 58 year old woman presents with a progressive fatigue and dyspnea associated with paresthesia. Laboratory tests show pancytopenia with hypersegmented neutrophiles, macrocytic hyporegenerative anemia and arguments for hemolysis, in particular highly increased LDH. This constellation strongly suggests vitamin B12 deficiency, which was confirmed with an undetectable cobalamine concentration in the blood of our patient. The etiologic work up shows the presence of anti-parietal cells antibodies at a titer of 1/640, diagnostic of Biermer anemia.