207 resultados para Anemia, Hemolytic, Congenital
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in approximately 60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.
Resumo:
Prenatal diagnosis of congenital lung anomalies has increased in recent years as imaging methods have benefitted from technical improvements. The purpose of this pictorial essay is to illustrate typical imaging findings of a wide spectrum of congenital lung anomalies on prenatal US and MRI. Moreover, we propose an algorithm based on imaging findings to facilitate the differential diagnosis, and suggest a follow-up algorithm during pregnancy and in the immediate postnatal period.
Resumo:
OBJECTIVE: To compare the distribution of congenital anomalies within the VACTERL association (vertebral defects, anal atresia, cardiac, tracheoesophageal, renal, and limb abnormalities) between patients exposed to tumor necrosis factor-α (TNF-α) antagonist and the general population. METHODS: Analysis for comparison of proportional differences to a previous publication between anomaly subgroups, according to subgroup definitions of the European Surveillance of Congenital Anomalies (EUROCAT), a population-based database. RESULTS: Most EUROCAT subgroups belonging to the VACTERL association contained only one or 2 records of TNF-α antagonist exposure, so comparison of proportions was imprecise. Only the category "limb abnormalities" showed a significantly higher proportion in the general population. CONCLUSION: The high number of congenital anomalies belonging to the VACTERL association from a report of pregnancies exposed to TNF-α antagonists could not be confirmed using a population-based congenital anomaly database.
Resumo:
Chemotherapy-induced anemia in children with cancer is usually of acute onset. To investigate an alternate treatment to transfusion (Tx), we undertook a phase I-II clinical trial of daily administrations of recombinant erythropoietin (rHuEPO). Patients with a hemoglobin (Hgb) value < 75 g/l were treated for 14 days in cohorts of 3 at escalating daily doses of 25, 50, 70, 80, 90, and 100 U/kg respectively. The maximum-tolerated dose was not encountered. Of 18 courses given to 15 children aged 0.5-18 years, 7 (39%) were associated with increased or stable Hgb levels (courses without Tx), while 11 (61%) were terminated by a Tx, without evidence of a dose-response relationship. Changes in mean Hgb levels and absolute reticulocyte counts were paralleled by those of mean white blood cell, platelet, and absolute neutrophil counts during the first 7 days and when the end-points of the study were reached. Numbers of circulating burst-forming units-erythroid remained low throughout courses without Tx. No cumulative increase of serially determined serum EPO levels was observed and serum ferritin levels were elevated in both groups of courses. We conclude that daily administration of rHuEPO were safe but ineffective in our trial. Recovery of chemotherapy-induced myelosuppression appeared to be the rate-limiting factor for the outcome, without evidence of an enhanced stimulation of erythropoiesis. The lack of a proliferative response of specific progenitor cells suggested a mechanism of transient primary resistance to rHuEPO.
Resumo:
RYR1 mutations are the most common cause of structural congenital myopathies and may exhibit both dominant and recessive inheritance. Histopathological findings are variable and include central cores, multi-minicores, type 1 predominance/ uniformity, fibre type disproportion, increased internal nucleation and fatty and connective tissue. Until recently, diagnostic RYR1 sequencing was limited to mutational hotspots due to the large size of the gene. Since the introduction of full RYR1 sequencing in 2007 we have detected pathogenic mutations in 77 families: 39 had dominant inheritance and 38 recessive inheritance. In some cases with presumably recessive inheritance, only one heterozygous mutation inherited from an asymptomatic parent was identified. Of 28 dominant mutations, 6 were novel; 37 of the 59 recessive mutations were also novel. Dominant mutations were more frequently in recognized hotspot regions, while recessive mutations were distributed throughout the coding sequence. Dominant mutations were predominantly missense, whereas recessive mutations included many nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability in patients with both dominant and recessive inheritance. As a group, those with dominant mutations were generally more mildly affected than those with recessive inheritance, who had earlier onset and were weaker with more functional limitations. Extraocular muscle involvement was almost exclusively observed in the recessive group. Bulbar involvement was also more prominent in this group, resulting in a larger number requiring gastrostomy insertion. In conclusion, genomic sequencing of the entire RYR1 leads to the detection of many novel mutations, but may miss large genetic rearrangements in some cases. Assigning pathogenicity to novel mutations is often difficult and interpretation of genetic results in the context of clinical, histological and, increasingly, muscle MRI findings is essential.
Resumo:
Magnetic resonance imaging is a rapidly developing modality in cardiology. It offers an excellent image definition and a large field of view, allowing a more accurate morphological assessment of cardiac malformations. Due to its unique versatility and its ability to provide myocardial tissue characterization, cardiac magnetic resonance (CMR) is now recognized as a central imaging modality for a wide range of congenital heart diseases, including assessment of post-surgical cardiac anatomy, quantification of valvular disease and detection of myocardial ischemia. CMR provides useful diagnostic information without any radiation exposure, and improves the global management of patients with congenital heart disease.
Resumo:
Objective: To establish if hyperglycaemia and cardiac Troponin I (cTnI) after congenital heart surgery on cardiopulmonary bypass in children could predict outcome in intensive care unit. Methods: retrospective cohort study including 274 children (mean age 4.6 years; range 0 - 17 years-old). CTnI and glucose values were retrieved from our database. Integrated values (area under the curve (AUC)) were calculated for evaluation of sustained hyperglycaemia and then normalised per hour (48h-Gluc/h). Maximal cTnI, fi rst glucose value (Gluc1) and 48h-Gluc/h were then correlated with duration of mechanical ventilation, ICU stay and mortality using cut-off values. Results: The mean duration of mechanical ventilation was 5.1 ± 7.2 days and ICU stay was 11.0 ± 13.3 days, 11 patients (3.9%) died. Hyperglycaemia (>6.1 mmol/l) was present in 68% of children at admission and was sustained in 85% for 48 hours. The mean value of Gluc1 (7.3 ± 2.7 vs. 11.8 ± 6.4 mmol/l, p < 0.0001), 48h-Gluc/h (7.4 ± 1.4 vs. 9.9 ± 4.6 mmol/l/h, p < 0.0001) and cTnI max (16.7 ± 21.8 vs. 59.2 ± 41.4 mcg/l, p < 0.0001) were signifi cantly lower in survivors vs. non survivors. Cut-off values and odds ratio are summarised in Table 1. Analyses for duration of mechanical ventilation and for length of stay in ICU are depicted in Table 2. Conclusions: Hyperglycaemia is frequent after cardiopulmonary bypass and sustained in the fi rst 48 hours. Admission glycaemia and cTnI max are associated with a high risk of mortality, prolonged duration of mechanical ventilation and prolonged length of stay in ICU.
Resumo:
BACKGROUND: Atrial arrhythmias increase disease burden in the general adult population. Adults with congenital heart lesions constitute a rapidly growing group of patients with cardiovascular disease. We hypothesized that atrial arrhythmias increase with age and impair health outcomes in this population. METHODS AND RESULTS: We conducted a population-based analysis of prevalence, lifetime risk, mortality, and morbidity associated with atrial arrhythmias in adults with congenital heart disease from l983 to 2005. In 38 428 adults with congenital heart disease in 2005, 5812 had atrial arrhythmias. Overall, the 20-year risk of developing atrial arrhythmia was 7% in a 20-year-old subject and 38% in a 50-year-old subject. More than 50% of patients with severe congenital heart disease reaching age 18 years developed atrial arrhythmias by age 65 years. In patients with congenital heart disease, the hazard ratio of any adverse event in those with atrial arrhythmias compared with those without was 2.50 (95% confidence interval, 2.38 to 2.62; P<0.0001), with a near 50% increase in mortality (hazard ratio, 1.47; 95% confidence interval, 1.37 to 1.58; P<0.001), more than double the risk of morbidity (stroke or heart failure) (hazard ratio, 2.21; 95% confidence interval, 2.07 to 2.36; P<0.001), and 3 times the risk of cardiac interventions (hazard ratio, 3.00; 95% confidence interval, 2.81 to 3.20; P<0.001). CONCLUSIONS: Atrial arrhythmias occurred in 15% of adults with congenital heart disease. The lifetime incidence increased steadily with age and was associated with a doubling of the risk of adverse events. An increase in resource allocation should be anticipated to deal with this increasing burden.
Resumo:
C57BL/6 mice are the most widely used strain of laboratory mice. Using in vivo proton Magnetic Resonance Spectroscopy ((1)H MRS), we have repeatedly observed an abnormal neurochemical profile in the brains of both wild-type and genetically modified mice derived from the C57BL/6J strain, consisting of a several fold increase in cerebral glutamine and two fold decrease in myo-inositol. This strikingly abnormal neurochemical "phenotype" resembles that observed in chronic liver disease or portosystemic shunting and appeared to be independent of transgene, origin or chow and was not associated with liver failure. As many as 25% of animals displayed the abnormal neurochemical profile, questioning the reliability of this model for neurobiology. We conducted an independent study to determine if this neurochemical profile was associated with portosystemic shunting. Our results showed that 100% of the mice with high brain glutamine displayed portosystemic shunting by concomitant portal angiography while all mice with normal brain glutamine did not. Since portosystemic shunting is known to cause alterations in gene expression in many organs including the brain, we conclude that portosystemic shunting may be the most significant problem associated with C57BL/6J inbreeding both for its effect on the central nervous system and for its systemic repercussions.
Resumo:
We recently reported on the deficiency of carbohydrate sulfotransferase 3 (CHST3; chondroitin-6-sulfotransferase) in six subjects diagnosed with recessive Larsen syndrome or humero-spinal dysostosis [Hermanns et al. (2008); Am J Hum Genet 82:1368-1374]. Since then, we have identified 17 additional families with CHST3 mutations and we report here on a series of 24 patients in 23 families. The diagnostic hypothesis prior to molecular analysis had been: Larsen syndrome (15 families), humero-spinal dysostosis (four cases), chondrodysplasia with multiple dislocations (CDMD "Megarbane type"; two cases), Desbuquois syndrome (one case), and spondylo-epiphyseal dysplasia (one case). In spite of the different diagnostic labels, the clinical features in these patients were similar and included dislocation of the knees and/or hips at birth, clubfoot, elbow joint dysplasia with subluxation and limited extension, short stature, and progressive kyphosis developing in late childhood. The most useful radiographic clues were the changes of the lumbar vertebrae. Twenty-four different CHST3 mutations were identified; 16 patients had homozygous mutations. We conclude that CHST3 deficiency presents at birth with congenital dislocations of knees, hips, and elbows, and is often diagnosed initially as Larsen syndrome, humero-spinal dysostosis, or chondrodysplasia with dislocations. The incidence of CHST3 deficiency seems to be higher than assumed so far. The clinical and radiographic pattern (joint dislocations, vertebral changes, normal carpal age, lack of facial flattening, and recessive inheritance) is characteristic and distinguishes CHST3 deficiency from other disorders with congenital dislocations such as filamin B-associated dominant Larsen syndrome and Desbuquois syndrome.