17 resultados para Andersson, Torbjörn: Rättsskyddsprincipen
Resumo:
In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.
Resumo:
Under chronic stress, carotenoid-based colouration has often been shown to fade. However, the ecological and physiological mechanisms that govern colouration still remain largely unknown. Colour changes may be directly induced by the stressor (for example through reduced carotenoid intake) or due to the activation of the physiological stress response (PSR, e.g. due to increased blood corticosterone concentrations). Here, we tested whether blood corticosterone concentration affected carotenoid-based colouration, and whether a trade-off between colouration and PSR existed. Using the common lizard (Lacerta vivipara), we correlatively and experimentally showed that elevated blood corticosterone levels are associated with increased redness of the lizard's belly. In this study, the effects of corticosterone did not depend on carotenoid ingestion, indicating the absence of a trade-off between colouration and PSR for carotenoids. While carotenoid ingestion increased blood carotenoid concentration, colouration was not modified. This suggests that carotenoid-based colouration of common lizards is not severely limited by dietary carotenoid intake. Together with earlier studies, these findings suggest that the common lizard's carotenoid-based colouration may be a composite trait, consisting of fixed (e.g. genetic) and environmentally elements, the latter reflecting the lizard's PSR.