21 resultados para Agricultural sub-sector
Resumo:
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Resumo:
The specific sensitization of tumor cells to the apoptotic response induced by genotoxins is a promising way of increasing the efficacy of chemotherapies. The RasGAP-derived fragment N2, while not regulating apoptosis in normal cells, potently sensitizes tumor cells to cisplatin- and other genotoxin-induced cell death. Here we show that fragment N2 in living cells is mainly located in the cytoplasm and only minimally associated with specific organelles. The cytoplasmic localization of fragment N2 was required for its cisplatin-sensitization property because targeting it to the mitochondria or the ER abrogated its ability to increase the death of tumor cells in response to cisplatin. These results indicate that fragment N2 requires a spatially constrained cellular location to exert its anti-cancer activity.
Resumo:
BACKGROUND:Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI.RESULTS:In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI.CONCLUSION:Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.
Resumo:
Switzerland appears to be a privileged place to investigate the urban political ecology of tap water because of the specificities of its political culture and organization and the relative abundance of drinking water in the country. In this paper, we refer to a Foucauldian theorization of power that is increasingly employed in the social sciences, including in human geography and political ecology. We also implement a Foucauldian methodology. In particular, we propose an archaeo-genealogical analysis of discourse to apprehend the links between urban water and the forms of governmentality in Switzerland between 1850 and 1950. Results show that two forms of governmentality, namely biopower and neoliberal governmentality, were present in the water sector in the selected period. Nonetheless, they deviate from the models proposed by Foucault, as their periodization and the classification of the technologies of power related to them prove to be much more blurred than Foucault's work, mainly based on France, might have suggested.