23 resultados para Agostinho de Jesus, c.1600-1661, Frei
Resumo:
BACKGROUND: Chronic hepatitis C infection is a major cause of end-stage liver disease. Therapy outcome is influenced by 25-OH vitamin D deficiency. To further address this observation, our study investigates the impact of the vitamin D receptor (NR1I1) haplotype and combined effects of plasma vitamin D levels in a well-described cohort of hepatitis C patients. METHODS: A total of 155 chronic hepatitis C patients were recruited from the Swiss Hepatitis C Cohort Study for NR1I1 genotyping and plasma 25-OH vitamin D level measurement. NR1I1 genotype data and combined effects of plasma 25-OH vitamin D level were analysed regarding therapy response (sustained virological response). RESULTS: A strong association was observed between therapy non-response and the NR1I1 CCA (bAt) haplotype consisting of rs1544410 (BsmI) C, rs7975232 (ApaI) C and rs731236 (TaqI) A alleles. Of the HCV patients carrying the CCA haplotype, 50.3% were non-responders (odds ratio [OR] 1.69, 95% CI 1.07, 2.67; P=0.028). A similar association was observed for the combinational CCCCAA genotype (OR 2.94, 95% CI 1.36, 6.37; P=0.007). The combinational CCCCAA genotype was confirmed as an independent risk factor for non-response in multivariate analysis (OR 2.50, 95% CI 1.07, 5.87; P=0.034). Analysing combined effects, a significant impact of low 25-OH vitamin D levels on sustained virological response were only seen in patients with the unfavourable NR1I1 CCA (bAt) haplotype (OR for non-SVR 3.55; 95% CI 1.005, 12.57; P=0.049). CONCLUSIONS: NR1I1 vitamin D receptor polymorphisms influence response to pegylated-interferon/ribavirin-based therapy in chronic hepatitis C and exert an additive genetic predisposition to previously described low 25-OH vitamin D serum levels.
Resumo:
BACKGROUND & AIMS: Vitamin D is an important immune modulator and preliminary data indicated an association between vitamin D deficiency and sustained virologic response (SVR) rates in hepatitis C virus (HCV) genotype 1 patients. We, therefore, performed a comprehensive analysis on the impact of vitamin D serum levels and of genetic polymorphisms with functional relevance within the vitamin D cascade on chronic hepatitis C and its treatment. METHODS: Vitamin D serum levels, genetic polymorphisms within the vitamin D receptor and 1α-hydroxylase were determined in a cohort of 468 HCV genotype 1, 2, and 3 infected patients who were treated with interferon-alfa based regimens. RESULTS: Chronic hepatitis C was associated with a high incidence of severe vitamin D deficiency compared to controls (25(OH)D(3)<10 ng/ml in 25% versus 12%, p<0.00001). 25(OH)D(3) deficiency correlated with SVR in HCV genotype 2 and 3 patients (50% and 81% SVR for patients with and without severe vitamin D deficiency, respectively, p<0.0001). In addition, the CYP27B1-1260 promoter polymorphism rs10877012 had substantial impact on 1,25-dihydroxyvitamin D serum levels (72, 61, and 60 pmol/ml for rs10877012 AA, AC, and CC, respectively, p=0.04) and on SVR rates in HCV genotype 1, 2, and 3 infected patients (77% and 65% versus 42% for rs10877012 AA, AC, and CC, respectively, p=0.02). CONCLUSIONS: Chronic hepatitis C virus infection is associated with vitamin D deficiency. Reduced 25-hydroxyvitamin D levels and CYP27B1-1260 promoter polymorphism leading to reduced 1,25-dihydroxyvitamin D levels are associated with failure to achieve SVR in HCV genotype 1, 2, and 3 infected patients.
Resumo:
Transplant glomerulopathy (TG) has received much attention in recent years as a symptom of chronic humoral rejection; however, many cases lack C4d deposition and/or circulating donor-specific antibodies (DSAs). To determine the contribution of other causes, we studied 209 consecutive renal allograft indication biopsies for chronic allograft dysfunction, of which 25 met the pathological criteria of TG. Three partially overlapping etiologies accounted for 21 (84%) cases: C4d-positive (48%), hepatitis C-positive (36%), and thrombotic microangiopathy (TMA)-positive (32%) TG. The majority of patients with confirmed TMA were also hepatitis C positive, and the majority of hepatitis C-positive patients had TMA. DSAs were significantly associated with C4d-positive but not with hepatitis C-positive TG. The prevalence of hepatitis C was significantly higher in the TG group than in 29 control patients. Within the TG cohort, those who were hepatitis C-positive developed allograft failure significantly earlier than hepatitis C-negative patients. Thus, TG is not a specific diagnosis but a pattern of pathological injury involving three major overlapping pathways. It is important to distinguish these mechanisms, as they may have different prognostic and therapeutic implications.
Resumo:
Background:Transplant glomerulopathy (TG) has received much attention in recent years as a manifestation of chronic humoral rejection (CHR). However, many cases lack C4d deposition and/or circulating donor-specifi c antibodies, and the contribution of other potential causes has not been fully addressed.Methods: Of 209 consecutive renal allograft indication biopsies performed for chronic allograft dysfunction, 25 that met pathologic criteria of TG (>10% duplication of the GBM without immune complex deposition) were examined for various etiologies, including hepatitis C infection (HCV), thrombotic microangiopathy (TMA), and CHR. 29 cases of biopsy-proven isolated chronic calcineurin inhibitor toxicity from the same time period were used as controls for comparing the prevalence of HCV.Results: Three partially overlapping categories accounted for 84% of the cases: C4d+TG (48%), HCV+TG (36%) and TMA+TG (32%). The majority of TMA+ cases were HCV+ (63%) and the majority of HCV+ cases had TMA (56%). Donor specifi c antibodies were associated with C4d+TG (7/8 vs. 1/4 C4d-TG; P<0.02), but not with HCV+TG. The prevalence of HCV was higher in the TG group than in 29 control patients without TG (36% vs. 7%, P<0.01). HCV+TG patients developed allograft failure earlier than HCV-TG patients (67.2 ± 60.2 mo versus 153.4 ± 126.2 mo, P=0.02). On a multivariate analysis, out of HCV, TG and C4d, only HCV was found to be a signifi cant risk factor for a more rapid allograft loss.Conclusion: We conclude that TG is not a specifi c diagnosis, but a pattern of pathologic injury with 3 major overlapping pathways involving CHR, HCV infection and TMA. It is important to distinguish these mechanisms, as they may have differentprognostic and therapeutic implications.
Resumo:
BACKGROUND & AIMS: The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage. METHODS: The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs. RESULTS: We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs. CONCLUSIONS: Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.
Resumo:
Progress in the understanding of the hepatitis C virus life cycle allowed the development of new, very promising antiviral therapies. Although these new drugs have a favourable profile in terms of efficacy, tolerance and interaction potential, their prescription in the setting of comedication and impaired renal or hepatic function remains a challenge. Here, we provide a summary of pharmacological considerations, focusing on sofosbuvir, simeprevir and daclatasvir. A better understanding of their metabolic pathways and transporters may help the prescriber to identify and manage drug interactions especially in patients under immunosuppressive or anti-HIV therapy. Recommendations for the prescription of these drugs in specific situations are also discussed.