35 resultados para Adriatic Sea
Resumo:
The Fuerteventura Jurassic sedimentary succession consists of oceanic and elastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post-late Pliensbachian), We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian-Bajocian) and of elastic deposits reflecting tectono-eustatic events (e.g,, late Toarcian to mid-Callovian erosion of the rift shoulder). The S-l sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian-Oxfordian red clays, Aptian-Albian black shales) alternating with elastic deposits (e.g., Kimmeridgian-Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.
Resumo:
During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.
Resumo:
In West Timer, Triassic deposits are found in the Parautochthonous Complex, as well as in the Allochthonous series of Sonnebait. A detailed biostratigraphic investigation integrating field observations and facies analysis, allowed the reconstruction of a synthetic lithostratigraphic succession for the Upper Triassic, a stratigraphic transition from Carnian shales to Upper Norian-Rhaetian limestones is also shown by this study. The fossil content predominantly originates from an open marine environment; lithostratigraphic Units A-E are dated on the basis of radiolaria and palynomorphs, and Unit H, on ammonites and conodonts. The presence of pelagic bioclasts, together with normal grading, horizontal laminations, and current ripples, is indicative of a distal slope to basin environment. The ammonite rich condensed limestone of Unit H was deposited on a `pelagic carbonate plateau' exposed to storms and currents. The organic facies have been used as criteria for biostratigraphy, palaeoenvironmental interpretation, and sequence stratigraphy. The palaeontological analysis of the Triassic succession of West Timer is based on the investigation of radiolaria and palynomorphs, in the marls and limestones of Units A-E, and also on ammonites and conodonts in the condensed limestone of Unit H. Units A and B are Carnian (Cordevolian) in age, based on the occurrence of the palynomorph Camerosporites secatus, associated with `Lueckisporites' cf. singhii, Vallasporites ignacii, Patinosporites densus and Partitisporites novimundanus. Unit C is considered as Norian, on the basis of a relatively high percentage of Gliscopollis meyeriana and Granuloperculatipollis rudis. Unit D contains significant palynomorphs and radiolaria; the organic facies, characterized by marine elements, is dominated by the Norian dinocysts Heibergella salebrosacea and Heibergella aculeata; the radiolaria confirm the Norian age. They range from the lowermost Norian to the lower Upper Norian. Unit E also contains radiolaria, associated in the upper part with the well-known marker of the Upper Norian, Monotis salinaria. For Unit E, the radiolaria attest to a Lower to Upper Norian age based on the occurrence of Capnodoce and abundant Capnuchosphaera; the upper part is Upper Norian to Rhaetian based on the presence of Livarella valida. Finally, the blocks of condensed limestone with ammonites and conodonts of Unit H allowed the reconstruction of a synthetic stratigraphic succession of Upper Carnian to Upper Norian age. Our stratigraphic data lead to the suggestion that the Allochthonous complex, classically interpreted as a tectonic melange of the accretionary prism of the island Arc of Banda. is a tectonically dismembered part of a Triassic lithostratigraphic succession. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE: APETx2, a toxin from the sea anemone Anthropleura elegantissima, inhibits acid-sensing ion channel 3 (ASIC3)-containing homo- and heterotrimeric channels with IC(50) values < 100 nM and 0.1-2 µM respectively. ASIC3 channels mediate acute acid-induced and inflammatory pain response and APETx2 has been used as a selective pharmacological tool in animal studies. Toxins from sea anemones also modulate voltage-gated Na(+) channel (Na(v) ) function. Here we tested the effects of APETx2 on Na(v) function in sensory neurones.¦EXPERIMENTAL APPROACH: Effects of APETx2 on Na(v) function were studied in rat dorsal root ganglion (DRG) neurones by whole-cell patch clamp.¦KEY RESULTS: APETx2 inhibited the tetrodotoxin (TTX)-resistant Na(v) 1.8 currents of DRG neurones (IC(50) , 2.6 µM). TTX-sensitive currents were less inhibited. The inhibition of Na(v) 1.8 currents was due to a rightward shift in the voltage dependence of activation and a reduction of the maximal macroscopic conductance. The inhibition of Na(v) 1.8 currents by APETx2 was confirmed with cloned channels expressed in Xenopus oocytes. In current-clamp experiments in DRG neurones, the number of action potentials induced by injection of a current ramp was reduced by APETx2.¦CONCLUSIONS AND IMPLICATIONS: APETx2 inhibited Na(v) 1.8 channels, in addition to ASIC3 channels, at concentrations used in in vivo studies. The limited specificity of this toxin should be taken into account when using APETx2 as a pharmacological tool. Its dual action will be an advantage for the use of APETx2 or its derivatives as analgesic drugs.
Resumo:
The Champlain Sea clays of Eastern Canada are incised by numerous rivers. Their slopes have been modified by landslides: on the Chacoura River near Trois-Rivières (Quebec), several large landslide scars, more or less recent, are visible. The role of erosion (channel incision, lateral channel migration and erosion of slopes due to agricultural drainage) as a trigger of these landslides is important. The aim of this study is to understand how erosion and landslides are related to valley development. From a detailed analysis of aerial photographs and DEMs, a map of the phenomena has been drawn by identifying various elements such as landslides, limits of the slope, position of the channel, and the area covered by forest. It is shown that channel change and erosion are strongly linked to landslides by the fact that they change the bank morphology in an unstable way. A slide in itself is a natural way for the slope to achieve stability. But when it occurs in a stream, it creates a disturbance to the stream flow enhancing local erosion which may change the river path and generate more erosion downstream or upstream resulting in more slides. Cross-valley sections and a longitudinal profile show that landslides are a major factor of valley formation. It appears that the upper part of the Chacoura River valley is still unaffected by landslides and has V-shaped sections. The lower part has been subject to intense erosion and many landslide scars can be seen. This shows that the valley morphology is transient, and that future activity is more likely to occur in the upper part of the river. Therefore the identification of areas prone to erosion will help determine the possible location of future large landslides just like the ones that occurred in the lower part.
Resumo:
A high resolution mineralogical study (bulk-rock and clay-fraction) was carried out upon the hemipelagic strata of the Angles section (Vocontian Basin, SE France) in which the Valanginian positive C-isotope excursion occurs. To investigate sea-level fluctuations and climate change respectively, a Detrital Index (DI: (phyllosilicates and quartz)/calcite) and a Weathering Index (WI: kaolinite/(illite + chlorite)) were established and compared to second-order sea-level fluctuations. In addition, the mineralogical data were compared with the High Nutrient Index (HNI, based on calcareous nannofossil taxa) data obtained by Duchamp-Alphonse et al. (2007), in order to assess the link between the hydrolysis conditions recorded on the surrounding continents and the trophic conditions inferred for the Vocontian Basin. It appears that the mineralogical distribution along the northwestern Tethyan margin is mainly influenced by sea-level changes during the Early Valanginian (Pertransiens to Stephanophorus ammonite Zones) and by climate variations from the late Early Valanginian to the base of the Hauterivian (top of the Stephanophorus to the Radiatus ammonite Zones). The sea-level fall observed in the Pertransiens ammonite Zone (Early Valanginian) is well expressed by an increase in detrital inputs (an increase in the DI) associated with a more proximal source and a shallower marine environment, whereas the sea-level rise recorded in the Stephanophorus ammonite Zone corresponds to a decrease in detrital influx (a decrease in the DI) as the source becomes more distal and the environment deeper. Interpretation of both DI and WI, indicates that the positive C-isotope excursion (top of the Stephanophorus to the Verrucosum ammonite Zones) is associated with an increase of detrital inputs under a stable, warm and humid climate, probably related to greenhouse conditions, the strongest hydrolysis conditions being reached at the maximum of the positive C-isotope excursion. From the Verrucosum ammonite Zone to the base of the Hauterivian (Radiatus ammonite Zone) climatic conditions evolved from weak hydrolysis conditions and, most likely, a cooler climate (resulting in a decrease in detrital inputs) to a seasonal climate in which more humid seasons alternated with more arid ones. The comparison of the WI to the HNI shows that the nutrification recorded al: the Angles section from the top of the Stephanophorus to the Radiatus ammonite Zones (including the positive C-isotope shift), is associated with climatic changes in the source areas. At that time, increased nutrient inputs were generally triggered by increased weathering processes in the source areas due to acceleration in the hydrological cycle under greenhouse conditions This scenario accords with the widely questioned palaeoenvironmental model proposed by Lini et al., (1992) and suggests that increasing greenhouse conditions are the main factor that drove the palaeoenvironmental changes observed in the hemipelagic realm of the Vocontian Basin, during the Valanginian positive C-isotope shift. This high-resolution mineralogical study highlights short-term climatic changes during the Valanginian, probably associated to rapid changes in the C-cycle. Coeval Massive Parana-Etendeka flood basalt eruptions may explain such rapid perturbations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
The aim of this paper was to investigate the possible connections between ammonite faunal turnover and the eustatic events recorded in Tethyan sequences during the middle Toarcian/early Bajocian time interval. For this we have analysed the biostratigraphic ranges, at the subzone level, of approximately 600 ammonite species belonging to 160 genera from several selected sections of the western Tethys (Mediterranean and Submediterranean provinces). The analysis of taxon ranges enabled us to plot curves for ammonite faunal turnovers, inter-subzonal distance, and diversity. Comparing the mentioned curves with Tethyan sequences [Hardenbol et al., 19981, we find that sea-level changes correlate well with origination and extinction events and faunal diversity. Most of the faunal turnovers correlate with stratigraphic events. Extinction events with their corresponding decrease in diversity correlate with regressive intervals and with major or minor sequence boundaries. Origination events and their corresponding increase in diversity were clearly connected with transgressions in Tethyan sequences. In several cases, the major sequence boundary and the subsequent transgressive phase correlate with major ammonite faunal turnover, whereas minor or medium sequence boundaries generally gave rise to minor or medium turnovers.