23 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
Resumo:
Sensory information can interact to impact perception and behavior. Foods are appreciated according to their appearance, smell, taste and texture. Athletes and dancers combine visual, auditory, and somatosensory information to coordinate their movements. Under laboratory settings, detection and discrimination are likewise facilitated by multisensory signals. Research over the past several decades has shown that the requisite anatomy exists to support interactions between sensory systems in regions canonically designated as exclusively unisensory in their function and, more recently, that neural response interactions occur within these same regions, including even primary cortices and thalamic nuclei, at early post-stimulus latencies. Here, we review evidence concerning direct links between early, low-level neural response interactions and behavioral measures of multisensory integration.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
In natural settings the same sound source is often heard repeatedly, with variations in spectro-temporal and spatial characteristics. We investigated how such repetitions influence sound representations and in particular how auditory cortices keep track of recently vs. often heard objects. A set of 40 environmental sounds was presented twice, i.e. as prime and as repeat, while subjects categorized the corresponding sound sources as living vs. non-living. Electrical neuroimaging analyses were applied to auditory evoked potentials (AEPs) comparing primes vs. repeats (effect of presentation) and the four experimental sections. Dynamic analysis of distributed source estimations revealed i) a significant main effect of presentation within the left temporal convexity at 164-215ms post-stimulus onset; and ii) a significant main effect of section in the right temporo-parietal junction at 166-213ms. A 3-way repeated measures ANOVA (hemisphere×presentation×section) applied to neural activity of the above clusters during the common time window confirmed the specificity of the left hemisphere for the effect of presentation, but not that of the right hemisphere for the effect of section. In conclusion, spatio-temporal dynamics of neural activity encode the temporal history of exposure to sound objects. Rapidly occurring plastic changes within the semantic representations of the left hemisphere keep track of objects heard a few seconds before, independent of the more general sound exposure history. Progressively occurring and more long-lasting plastic changes occurring predominantly within right hemispheric networks, which are known to code for perceptual, semantic and spatial aspects of sound objects, keep track of multiple exposures.
Resumo:
Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.
Resumo:
Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.
Resumo:
The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.
Resumo:
The availability of stem cells is of great promise to study early developmental stages and to generate adequate cells for cell transfer therapies. Although many researchers using stem cells were successful in dissecting intrinsic and extrinsic mechanisms and in generating specific cell phenotypes, few of the stem cells or the differentiated cells show the capacity to repair a tissue. Advances in cell and stem cell cultivation during the last years made tremendous progress in the generation of bona fide differentiated cells able to integrate into a tissue after transplantation, opening new perspectives for developmental biology studies and for regenerative medicine. In this review, we focus on the main works attempting to create in vitro conditions mimicking the natural environment of CNS structures such as the neural tube and its development in different brain region areas including the optic cup. The use of protocols growing cells in 3D organoids is a key strategy to produce cells resembling endogenous ones. An emphasis on the generation of retina tissue and photoreceptor cells is provided to highlight the promising developments in this field. Other examples are presented and discussed, such as the formation of cortical tissue, the epithelial gut or the kidney organoids. The generation of differentiated tissues and well-defined cell phenotypes from embryonic stem (ES) cells or induced pluripotent cells (iPSCs) opens several new strategies in the field of biology and regenerative medicine. A 3D organ/tissue development in vitro derived from human cells brings a unique tool to study human cell biology and pathophysiology of an organ or a specific cell population. The perspective of tissue repair is discussed as well as the necessity of cell banking to accelerate the progress of this promising field.
Resumo:
In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.