109 resultados para Acceleration data structure
Resumo:
1. Landscape modification is often considered the principal cause of population decline in many bat species. Thus, schemes for bat conservation rely heavily on knowledge about species-landscape relationships. So far, however, few studies have quantified the possible influence of landscape structure on large-scale spatial patterns in bat communities. 2. This study presents quantitative models that use landscape structure to predict (i) spatial patterns in overall community composition and (ii) individual species' distributions through canonical correspondence analysis and generalized linear models, respectively. A geographical information system (GIS) was then used to draw up maps of (i) overall community patterns and (ii) distribution of potential species' habitats. These models relied on field data from the Swiss Jura mountains. 3. Fight descriptors of landscape structure accounted for 30% of the variation in bat community composition. For some species, more than 60% of the variance in distribution could be explained by landscape structure. Elevation, forest or woodland cover, lakes and suburbs, were the most frequent predictors. 4. This study shows that community composition in bats is related to landscape structure through species-specific relationships to resources. Due to their nocturnal activities and the difficulties of remote identification, a comprehensive bat census is rarely possible, and we suggest that predictive modelling of the type described here provides an indispensable conservation tool.
Resumo:
Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.
Resumo:
According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the country and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of service activities. The method is applied to the distribution services in the agglomeration of Lausanne. Results show the emergence of new centralities and can be analyzed in both transportation and social terms.
Resumo:
Eustatic sea level changes during Pleistocene climatic fluctuations produced several cycles of connection-isolation among continental islands of the Sunda shelf. To explore the potential effects of these fluctuations, we reconstructed a model of the vicariant events that separated these islands, based on bathymetric information. Among many possible scenarios, two opposite phylogenetic patterns of evolution were predicted for terrestrial organisms living in this region: one is based on the classical allopatric speciation mode of evolution, while the other is the outcome of a sequential dispersal colonization of the archipelago. We tested the applicability of these predictions with an analysis of sequence variation of the cytochrome b gene from several taxa of Hylomys. They were sampled throughout SE-Asia and the Sunda islands. High levels of haplotype differentiation characterize the different island taxa. Such levels of differentiation support the existence of several allopatric species, as was suggested by previous allozyme and morphological data. Also in accordance with previous results, the occurrence of two sympatric species from Sumatra is suggested by their strongly divergent haplotypes. One species, Hylomys suillus maxi, is found both on Sumatra and in Peninsular Malaysia, while the other, H. parvus, is endemic to Sumatra. Its closest relative is H. suillus dorsalis from Borneo. Phylogenetic reconstructions also demonstrate the existence of a Sundaic clade composed of all island taxa, as opposed to those from the continent. Although there is no statistical support for either proposed biogeographic model of evolution, we argue that the sequential dispersal scenario is more appropriate to describe the genetic variation found among the Hylomys taxa. However, despite strong differentiation among island haplotypes, the cladistic relationships between some island taxa could not be resolved. We argue that this is evidence of a rapid radiation, suggesting that the separation of the islands may have been perceived as a simultaneous event rather than as a succession of vicariant events. Furthermore, the estimates of divergence times between the haplotypes of these taxa suggest that this radiation may actually have predated the climatic fluctuations of the Pleistocene. Further refinement of the initial palaeogeographic models of evolution are therefore needed to account for these results.
Resumo:
On 9 October 1963 a catastrophic landslide suddenly occurred on the southern slope of the Vaiont dam reservoir. A mass of approximately 270 million m3 collapsed into the reservoir generating a wave that overtopped the dam and hit the town of Longarone and other villages nearby. Several investigations and interpretations of the slope collapse have been carried out during the last 45 years, however, a comprehensive explanation of both the triggering and the dynamics of the phenomenon has yet to be provided. In order to re-evaluate the currently existing information on the slide, an electronic bibliographic database and an ESRI-geodatabase have been developed. The chronology of the collected documentation showed that most of the studies for re-evaluating the failure mechanisms were conducted in the last decade, as a consequence of knowledge, methods and techniques recently acquired. The current contents of the geodatabase will improve definition of the structural setting that influenced the slide and led to the the propagation of the displaced rock mass. The objectives, structure and contents of the e-bibliography and Geodatabase are indicated, together with a brief description on the possible use of the alphanumeric and spatial contents of the databases.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.
Resumo:
To test hypotheses about the universality of personality traits, college students in 50 cultures identified an adult or college-aged man or woman whom they knew well and rated the 11,985 targets using the 3rd-person version of the Revised NEO Personality Inventory. Factor analyses within cultures showed that the normative American self-report structure was clearly replicated in most cultures and was recognizable in all. Sex differences replicated earlier self-report results, with the most pronounced differences in Western cultures. Cross-sectional age differences for 3 factors followed the pattern identified in self-reports, with moderate rates of change during college age and slower changes after age 40. With a few exceptions, these data support the hypothesis that features of personality traits are common to all human groups.
Resumo:
Analyzing functional data often leads to finding common factors, for which functional principal component analysis proves to be a useful tool to summarize and characterize the random variation in a function space. The representation in terms of eigenfunctions is optimal in the sense of L-2 approximation. However, the eigenfunctions are not always directed towards an interesting and interpretable direction in the context of functional data and thus could obscure the underlying structure. To overcome such difficulty, an alternative to functional principal component analysis is proposed that produces directed components which may be more informative and easier to interpret. These structural components are similar to principal components, but are adapted to situations in which the domain of the function may be decomposed into disjoint intervals such that there is effectively independence between intervals and positive correlation within intervals. The approach is demonstrated with synthetic examples as well as real data. Properties for special cases are also studied.
Resumo:
Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.