78 resultados para Abylopsis spp., length
Resumo:
Cells normally grow to a certain size before they enter mitosis and divide. Entry into mitosis depends on the activity of Cdk1, which is inhibited by the Wee1 kinase and activated by the Cdc25 phosphatase. However, how cells sense their size for mitotic commitment remains unknown. Here we show that an intracellular gradient of the dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) Pom1, which emanates from the ends of rod-shaped Schizosaccharomyces pombe cells, serves to measure cell length and control mitotic entry. Pom1 provides positional information both for polarized growth and to inhibit cell division at cell ends. We discovered that Pom1 is also a dose-dependent G2-M inhibitor. Genetic analyses indicate that Pom1 negatively regulates Cdr1 and Cdr2, two previously described Wee1 inhibitors of the SAD kinase family. This inhibition may be direct, because in vivo and in vitro evidence suggest that Pom1 phosphorylates Cdr2. Whereas Cdr1 and Cdr2 localize to a medial cortical region, Pom1 forms concentration gradients from cell tips that overlap with Cdr1 and Cdr2 in short cells, but not in long cells. Disturbing these Pom1 gradients leads to Cdr2 phosphorylation and imposes a G2 delay. In short cells, Pom1 prevents precocious M-phase entry, suggesting that the higher medial Pom1 levels inhibit Cdr2 and promote a G2 delay. Thus, gradients of Pom1 from cell ends provide a measure of cell length to regulate M-phase entry.
Resumo:
Objectif : En Suisse, la réadaptation est financée en¦partie par l'assureur qui fixe préalablement à l'admission¦un nombre de jours (durée garantie) qu'il s'engage¦à rembourser. Lorsqu'une durée garantie est trop courte,¦une demande de prolongation est nécessaire, induisant¦des démarches administratives. Les objectifs de cette¦étude étaient a) d'étudier le lien entre durées garanties¦et caractéristiques du patient ; b) d'estimer les coûts¦liés aux demandes de prolongation ; c) d'évaluer¦l'impact de l'introduction d'un modèle d'attribution de¦durée garantie basé sur l'état fonctionnel du patient.¦Méthodes : Les corrélations entre état fonctionnel,¦durée effective et durée garantie ont été testées sur¦208 séjours représentatifs. Des durées garanties fictives¦ont été calculées à partir de la médiane de durée de¦séjour de 2 335 patients, groupés selon leur niveau¦fonctionnel (score des activités de base de la vie quotidienne¦(BAVQ) 0-1 vs 2-4 vs 5-6), puis comparées aux¦durées de séjour effectives et garanties.¦Résultats : L'état fonctionnel du patient n'est pas¦corrélé à la durée garantie, et 69 % des séjours nécessitent¦au moins une demande de prolongation, représentant¦2,6 équivalents temps plein en temps administratif¦projeté sur le canton. L'application du modèle proposé¦réduirait de 28 % les demandes de prolongation, et¦n'augmenterait que marginalement la proportion de¦jours garantis en surplus (11,2 % contre 6,5 % actuellement).¦Conclusion : L'utilisation systématique d'un modèle¦d'attribution de durées garanties basées sur l'état¦fonctionnel du patient permettrait de réduire sensiblement¦les coûts administratifs liés aux demandes de¦prolongation, sans entraîner de risque accru d'une augmentation¦de la durée de séjour.
Resumo:
Objectives:To investigate the associations between falls before hospital¦admission, falls during hospitalization, and length of stay in elderly¦people admitted to post-acute geriatric rehabilitation. Method: History¦of falling in the previous 12 months before admission was recorded¦among 249 older persons (mean age 82.3±7.4 years, 69.1% women)¦consecutively admitted to post-acute rehabilitation. Data on medical,¦functional and cognitive status were collected upon admission. Falls¦during hospitalization and length of stay were recorded at discharge.¦Results: Overall, 92 (40.4%) patients reported no fall in the 12 months¦before admission; 63(27.6%) reported 1 fall, and 73(32.0%) reported¦multiple falls. Previous falls occurrence (one or more falls) was significantly¦associated with in-stay falls (19.9% of previous fallers fell¦during the stay vs 7.6% in patients without history of falling, P=.01),¦and with a longer length of stay (22.4 ± 10.1 days vs 27.1 ± 14.3 days,¦P=.01). In multivariate robust regression controlling for gender, age,¦functional and cognitive status, history of falling remained significantly¦associated with longer rehabilitation stay (2.8 days more in single fallers,¦p=.05, and 3.3 days more in multiple fallers, p=.0.1, compared to¦non-fallers). Conclusion: History of falling in the 12 months prior to¦post acute geriatric rehabilitation is independently associated with a¦longer rehabilitation length of stay. Previous fallers have also an¦increased risk of falling during rehabilitation stay. This suggests that¦hospital fall prevention measures should particularly target these high¦riskpatients.
Resumo:
Using cryo-electron microscopy we reconstructed the three-dimensional trajectories adopted in cryovitrified solutions by double-stranded DNA molecules in which the backbone of one strand lacked a phosphate at regular intervals of 20 nucleotides. The shape of such nicked DNA molecules was compared with that of DNA molecules with exactly the same sequence but without any single-stranded scissions. Upon changing the salt concentration we observed opposite effects of charge neutralization on nicked and non-nicked DNA. In low salt solutions (10 mM Tris-HCl, 10 mM NaCl) the applied dense nicking caused ca 3.5-fold reduction of the DNA persistence length as compared with non-nicked DNA. Upon increasing the salt concentration (to 150 mM NaCl and 10 mM MgCl2) the persistence length of non-nicked DNA appreciably decreased while that of nicked DNA molecules increased by a factor of 2.
Resumo:
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.
Resumo:
BACKGROUND: Evidence is accumulating that telomere length is a good predictor of life expectancy, especially early in life, thus calling for determining the factors that affect telomere length at this stage. Here, we investigated the relative influence of early growth conditions and origin (genetics and early maternal effects) on telomere length of collared flycatchers (Ficedula albicollis) at fledging. We experimentally transferred hatchlings among brood triplets to create reduced, control (i.e. unchanged final nestling number) and enlarged broods. RESULTS: Although our treatment significantly affected body mass at fledging, we found no evidence that increased sibling competition affected nestling tarsus length and telomere length. However, mixed models showed that brood triplets explained a significant part of the variance in body mass (18%) and telomere length (19%), but not tarsus length (13%), emphasizing that unmanipulated early environmental factors influenced telomere length. These models also revealed low, but significant, heritability of telomere length (h(2) = 0.09). For comparison, the heritability of nestling body mass and tarsus length was 0.36 and 0.39, respectively, which was in the range of previously published estimates for those two traits in this species. CONCLUSION: Those findings in a wild bird population demonstrate that telomere length at the end of the growth period is weakly, but significantly, determined by genetic and/or maternal factors taking place before hatching. However, we found no evidence that the brood size manipulation experiment, and by extension the early growth conditions, influenced nestling telomere length. The weak heritability of telomere length suggests a close association with fitness in natural populations.
Resumo:
Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.
Resumo:
Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.
Resumo:
QUESTIONS UNDER STUDY: To investigate if two distinct, commercially available embryo culture media have a different effect on birthweight and length of singleton term infants conceived after IVF-ICSI. METHODS: University hospital based cohort study. Between 1 January 2000 and 31 December 2004, patients conceiving through IVF-ICSI at the University Hospital, Lausanne have been allocated to two distinct embryo culture media. Only term singleton pregnancies were analysed (n = 525). Data analysis was performed according to two commercially available culture media: Vitrolife (n = 352) versus Cook (n = 173). Analysis was performed through linear regression adjusted for confounders. Media were considered equivalent if the 95% confidence interval lay between -150 g/+150 g. RESULTS: Length, gestational age and distribution of birthweight percentiles did not differ between groups (for both genders). Analysis of the whole cohort, adjusted for a subset of confounders, resulted in a statistically not different mean birthweight between the two groups (Vitrolife +37 g vs Cook, 95%CI: -46 g to 119 g) suggesting equivalence. Adjustment for an enlarged number of confounders in a subsample of patients (n = 258) also revealed no relevant mean birthweight difference of +71 g (95%CI: -45 g to 187 g) in favour of Vitrolife; however, lacking power to prove equivalence. CONCLUSIONS: Our data suggest that significant differences in birthweight due to these two distinct, commercially available embryo culture media are unlikely.
Resumo:
BACKGROUND: Dermatophytes are the main cause of onychomycoses, but various non-dermatophyte filamentous fungi are often isolated from abnormal nails. OBJECTIVE: Our aim was the in situ identification of the fungal infectious agent in 8 cases of onychomycoses which could not be cured after systemic terbinafine and itraconazole treatment. METHODS: Fungal DNA was extracted from nail samples, and infectious fungi were identified by restriction fragment length polymorphism (RFLP) of amplified fungal ribosomal DNA using a previously described PCR/RFLP assay. RESULTS: PCR/RFLP identification of fungi in nails allows the identification of the infectious agent: Fusarium sp., Acremonium sp. and Aspergillus sp. were found as a sole infectious agent in 5, 2 and 1 cases, respectively. CONCLUSIONS: Fusarium spp. and other non-dermatophyte filamentous fungi are especially difficult to cure in onychomycoses utilising standard treatment with terbinafine and itraconazole. PCR fungal identification helps demonstrate the presence of moulds in order to prescribe alternative antifungal treatments.
Resumo:
SUMMARY : The shrews are among the most ancient of living eutherian mammals. They represent an interesting comparative model because of their extreme divergent species. The two shrew subfamilies, Soricinae and Crocidurinae are characterized by fundamental differences concerning their metabolic rates, litter size, period of gestation and different mating pattern. In this study we established and compared the sperm characteristics in four species of different genera of shrews (Sorex araneus, Neomys fodiens, Crocidura russula and Suncus murinus) in the context of the sperm competition hypothesis. The sperm competition concerns the competition between ejaculates of different males for fertilization of ova of a female within a single estrus period. As expected, a greater relative testis size (indicating the importance of polyandry) was associated with a higher number of cauda epididymal spermatozoa, higher level of circulating testosterone and a higher percentage of progressive sperm motility. In addition, we investigated if the basal metabolic rate (BMR) and relative testis size (RTS) may be correlated with the cycle length of spermatogenesis. In this purpose, we determined and compared the cycle length of spermatogenesis in six species of shrews belonging to two subfamilies: Soiricinae (Sorex araneus, Sorex coronatus, Sorex minutus, Neomys fodiens) and Crocidurinae (Crocidura russula, Sunctes murinus). Our results indicate that sperm competition and metabolic rate may act independently or together reducing cycle length of spermatogenesis and thus increase sperm production. We finally investigated this correlation across 32 mammalian species. After testing the data for phylogenetic independence, our results showed that BMR explained only 21 % of the variation, while the RTS explained 44% of the variation of the cycle length of spermatogenesis. The level of the sperm competition, indicated by RTS, is thus to our knowledge the most important factor influencing the speed of spermatogenesis in mammals. RESUME : Les musaraignes sont parmi les plus anciens mammifères vivants. Grâce à leurs extrêmes divergences, ils sont souvent utilisés comme modèles dans des études comparatives. Les deux sous-familles Soricinae et Crocidurinae sont caractérisées par des différences fondamentales, notamment en termes d'intensité du métabolisme, des stratégies de reproduction et du comportement social. Dans la première partie de cette étude, nous avons établi et comparé certaines "caractéristiques des spermatozoïdes chez quatre espèces de musaraignes appartenant à des genres différents (Sorex araneus, Neomys fodiens, Crocidura russula et Suncus murinus). Les résultats ont été interprétés dans le contexte de la théorie de la compétition spermatique, c'est-à-dire la compétition entre le sperme de deux ou plusieurs mâles pour féconder un maximum d'ovules de la même femelle. Cette compétition spermatique peut amener à certaines adaptations biologiques afin de produire plus de sperme. Comme attendu, une grande taille relative des testicules est associée à un nombre élevé de spermatozoïdes, dont la majorité présente une mobilité progressive. Un taux élévé de testostérone a également été observé. De plus, nous avons étudié l'influence du métabolisme basal ainsi que l'intensité de la compétition spermatique sur la durée du cycle de la spermatogenèse. Dans ce but, nous avons déterminé et comparé les durées de la spermatogenèse chez six espèces de musaraignes appartenant à deux sous-familles : Soricinae (Sorex araneus, Sorex coronatus, Sorex minutus, Neomys fodiens) et Crocidurinae (Crocidura russula, Suncus murinus). Les résultats obtenus indiquent que ces deux facteurs (l'intensité du métabolisme basal et de la compétition spermatique) agissent d'une manière dépendante ou indépendante dans le même sens. La conséquence de ces actions est une diminution de la durée de la spermatogenèse entraînant une augmentation de la production de spermatozoïdes. Nous avons finalement étudié ce phénomène dans l'ensemble des mammifères. Après avoir testé l'indépendance phylogénétique, nos résultats montrent que l'intensité de la compétition spermatique indiquée par le RTS est mieux corrélée avec la régulation de la durée de la spermatogenèse qu'avec l'intensité du métabolisme.
Resumo:
Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.