30 resultados para AQUEOUS UREA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To examine the efficacy and safety of Baerveldt shunt (BS) implantation compared to combined phacoemulsification and Baerveldt shunt implantation (PBS). This study was designed to detect a difference in IOP reduction of 20% (~4mmHg) between groups with 90% power. Methods: Sixty patients with medically uncontrolled glaucoma, prospectively underwent either or BS implantation with phacoemulsification (Group PBS; n=30) or BS implantation alone (group BS; n=30, pseudophakic eyes only). Groups were matched for age, glaucoma subtype and length of follow-up. Pre and post-operative measures recorded included patient demographics, visual acuity, IOP, number of glaucoma medications (GMs) and all complications. Success was defined as IOP≤21mmHg and 20% reduction in IOP from baseline with or without GMs. Results: Age of PBS and BS groups was 61 vs 62 years respectively (p=0.72*). There were no significant differences in preoperative baseline characteristics: PBS vs PB, mean IOP =25.5mmHg (standard deviation (SD); ±10.3mmHg) vs 26.1mmHg (SD ±10.6mmHg), p=0.81*; mean GMs=3.0 (SD ±1.1) vs 3.1 (SD ±1.0), p=0.83*; mean VA=0.3 vs 0.3, p=0.89*. At year one there were no significant differences observed between groups in post-operative IOP, GMs or VA, mean IOP =14.1mmHg (SD ±5.4mmHg) vs 11.5 mmHg (SD ±4.2mmHg), p=0.12*; mean GMs=1.6 (SD ±1.4) vs 1.1 (SD ±1.1), p=0.23*; mean VA=0.5 vs 0.4, p=0.46*. Complication rates were similar between the two groups (7% vs 14%). Success rate was lower in eyes with PBS (71%) than with BS (88%), however this did not reach statistical significance (p=0.95, log-rank test). * two-sample t-test Conclusions: There were no significant differences at year one in success or complication rates between PBS and BS groups suggesting that simultaneous phacoemulsification does not have a marked (difference of >4mmHg) effect on tube function. IOP reduction and success were less in the PBS group, a larger sample (n=120) would be required to investigate if there is a 10% difference in IOP reduction between groups, however it is unclear if this would be a clinically significant difference to justify separate surgeries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To describe the use of anterior segment optical coherence tomography (AS-OCT) to clarify the position and patency of aqueous shunt devices in the anterior chamber of eyes where corneal edema or tube position does not permit a satisfactory view. DESIGN: Noncomparative observational case series. METHODS: Four cases are reported in which aqueous shunt malposition or obstruction was suspected but the shunt could not be seen on clinical examination. The patients underwent AS-OCT to identify the position and patency of the shunt tip. RESULTS: In each case, AS-OCT provided data regarding tube position and/or patency that could not be obtained by slit-lamp examination or by gonioscopy that influenced management. CONCLUSIONS: AS-OCT can be used to visualize anterior chamber tubes in the presence of corneal edema that precludes an adequate view or in cases where the tube is retracted into the cornea. In such cases, AS-OCT is useful in identifying shunt patency and position, which helps guide clinical decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporine A is a poorly water-soluble, immunosuppressive drug used to treat a variety of ocular diseases. Its limited solubility makes challenging the development of a cyclosporine A-based eye drop for ocular topical application. Based on the prodrug strategy, the practically insoluble cyclosporine A was converted into a freely soluble prodrug. Such a water-soluble prodrug made it possible to develop water-based concentrated eye drops. The prodrug formulations were tested for their ex vivo permeation and in vivo distribution at three concentrations (equivalent to 0.05%, 0.50% and 2.00% w/v cyclosporine A). The ex vivo permeation experiments were performed on corneal and conjunctival epithelia. The in vivo distribution evaluated the total cyclosporine A present in the ocular structures as well as in serum, spleen and cervical lymphatic ganglions. Each prodrug formulation was compared to conventionally used cyclosporine A eye drops at an equivalent concentration. The experimental results showed that the tested eye drops behaved differently. The prodrug formulation was characterized by the following: i) preferential conjunctival penetration, ii) an interesting capacity to create large tissue deposits and iii) a lower risk of systemic complications and immunosuppression. The prodrug aqueous eye drop was demonstrated to be a patient-friendly option for the treatment of ocular diseases requiring high ocular levels of cyclosporine A, pushing the boundaries of the current therapeutic arsenal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Aqueous flow through trabeculectomy blebs has been suggested to influence filtration bleb survival. We investigated the relationship between the requirement to increase aqueous flow via adjustable suture removal and surgical outcomes following "safe trabeculectomy" with mitomycin C (MMC). Methods: 62 consecutive eyes of 53 patients underwent fornix based trabeculectomy with adjustable sutures, intraoperative MMC and intensive postoperative steroids. Subconjunctival antimetabolite injections and bleb needlings were administered according to bleb vascularity and IOP trends. Main outcome measures were: success rates (definition: IOP≤21mmHg and 20% IOP reduction); number of antimetabolite injections; bleb needlings; number of of eyes recommencing glaucoma medications and complications. Results: Mean age was 70.4±16.0 years (mean± SD); mean preoperative IOP was 24.5±9.1 mmHg and decreased to 12.3±8.9mmHg postoperatively. Mean number of sutures was 2.6 ± 0.7. Eyes were divided into 2 groups in relation to the number of sutures removed. The number of subconjunctival MMC injections required for those requiring 2 suture removals was significantly greater than those requiring 1 suture removal (p<0.05) The number of needlings and 5FU injections also increased but did not reach significance (p=0.09 and p=0.34 respectively). Least-squared linear regression analysis showed the number of needlings required had a statistically significant (p=0.05) trend with respect to time elapsed between surgery and first suture removal. No other interventions had significant trends. Mean time between surgery and suture removal was: 4.2±9.2 weeks (suture #1) and 5.7±9.7 weeks (suture#2). Antiglaucoma medication was restarted in only 5 eyes. Postoperative complications were infrequent: Seidel (3.2%), peripheral choroidal effusions at any time (3.2%), and shallow anterior chamber (1.6%). Conclusion: Eyes requiring a greater number of suture removals required a significantly greater number of antifibrosis interventions. The time elapsed before suture removal was inversely related to the number of postoperative needlings, suggesting these eyes may have decreased aqueous production and therefore require aggressive post-operative management to prevent bleb failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicomponent indicator displacement assay ( MIDA) based on an organometallic receptor and three dyes can be used for the identification and quantification of nucleotides in aqueous solution at neutral pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was the in vitro and in vivo evaluation of a novel aqueous formulation based on polymeric micelles for the topical delivery of cyclosporine A for dry eye treatment. METHODS: In vitro experiments were carried out on primary rabbit corneal cells, which were characterized by immunocytochemistry using fluorescein-labeled lectin I/isolectin B4 for the endothelial cells and mouse monoclonal antibody to cytokeratin 3+12 for the epithelial ones. Living cells were incubated for 1 hour or 24 hours with a fluorescently labeled micelle formulation and analyzed by fluorescence microscopy. In vivo evaluations were done by Schirmer test, osmolarity measurement, CyA kinetics in tears, and CyA ocular distribution after topical instillation. A 0.05% CyA micelle formulation was compared to a marketed emulsion (Restasis). RESULTS: The in vitro experiments showed the internalization of micelles in the living cells. The Schirmer test and osmolarity measurements demonstrated that micelles did not alter the ocular surface properties. The evaluation of the tear fluid gave similar CyA kinetics values: AUC = 2339 ± 1032 min*μg/mL and 2321 ± 881.63; Cmax = 478 ± 111 μg/mL and 451 ± 74; half-life = 36 ± 9 min and 28 ± 9 for the micelle formulation and Restasis, respectively. The ocular distribution investigation revealed that the novel formulation delivered 1540 ± 400 ng CyA/g tissue to the cornea. CONCLUSIONS: The micelle formulation delivered active CyA into the cornea without evident negative influence on the ocular surface properties. This formulation could be applied for immune-related ocular surface diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To examine the efficacy and safety of repeat deep sclerectomy (DS) versus Baerveldt shunt (BS) implantation as second line surgery following failed primary DS. Methods: Fifty one patients were prospectively recruited to undergo BS implantation following failed DS and 51 patients underwent repeat DS, for which data was collected retrospectively. All eyes had at least one failed DS. Surgical success was defined as IOP≤21mmHg and 20% reduction in IOP from baseline. Success rates, number of glaucoma medications (GMs), IOP, and complication rates were compared between the two groups at year 1, post-operatively. Results: Mean age, sex and the proportion of glaucoma subtypes were similar between groups. Preoperatively IOP was significantly lower in DS group vs BS group (18.8mmHg vs 23.8mmHg, p<0.01, two sample t-test). Postoperatively IOP was significantly higher in DS group than BS group (14.6mmHg vs 12.0mmHg, p<0.01, two-sample t-test). In the DS group, 47% of eyes did not achieve 20% reduction in IOP from baseline, as a result the success rates were significantly lower in eyes with DS (51%) than in eyes with BS (88%) (p=0.02, log-rank test). Preoperatively the number of GMs used in DS and BS groups were similar (2.2 vs 2.7 p=0.02, two sample t-test). Postoperatively there remained no significant difference in GMs between groups (0.9 vs 1.1, p= 0.58, two sample t-test). Complication rates were similar between the two groups (12% vs 10%). Conclusions: Baerveldt tube implantation was more effective in lowering IOP than repeat deep sclerectomy in eyes with failed primary DS, at year one. Complications were minor and infrequent in both groups

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyponatremia is the main complication of inappropriate antidiuretic hormone secretion (SIADH), sometimes fatal. Treatment strategy depends on the cause and the severity of the hyponatremia. Recent studies have shown the efficacy of urea in treating acute hyponatremia secondary to SIADH, by inducing an osmotic water drive. We describe an infant with chronic hyponatremia secondary to SIADH in which the long-term oral treatment with urea was successful and well tolerated. The aim of this paper is to highlight the potential benefits of urea treatment in case of chronic hyponatremia secondary to SIADH. CONCLUSION: Chronic oral urea treatment in children with SIADH allows an easy and safe water and sodium control and may permit a decrease in fluid restriction in this situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orosomucoid (ORM) phenotyping has been performed on 329 unrelated Swiss subjects, using immobilized pH gradients with 8 M urea and 2% v/v 2-mercaptoethanol followed by immunoblotting. After desialylation the band patterns of ORM confirmed that the polymorphism of the structural locus ORM1 is controlled by three codominant autosomal alleles (ORM1*F1, ORM1*S and ORM1*F2). One rare and one new allele were detected. The rare variant, tentatively assigned to the second structural locus ORM2, is observed in a cathodal position and named ORM2 B1. The new variant, tentatively assigned to the first structural locus ORM1, is observed in a region located between ORM1 S and ORM1 F2, and named ORM1 F3. Moreover, the pI values of the ORM variants have been measured accurately with Immobiline Dry Plates (LKB): they were found to be within the pH range 4.93-5.14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. L'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Récemment, l?eau liquide a été décrite comme une structure formée d?un réseau aléatoire de liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure à basse température, certaines liaisons hydrogènes sont détruites ce qui est énergétiquement défavorable. Les molécules d?eau s?arrangent alors autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l?eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise les liaisons hydrogènes. Maintenant, la dissolution des particules devient énergétiquement défavorable, et les particules se séparent de l?eau en formant des agrégats qui minimisent leur surface exposée à l?eau. Pourtant, à très haute température, les effets entropiques deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d?eau. En utilisant un modèle basé sur ces changements de structure formée par des liaisons hydrogènes j?ai pu reproduire les phénomènes principaux liés à l?hydrophobicité. J?ai trouvé une région de coexistence de deux phases entre les températures critiques inférieure et supérieure de solubilité, dans laquelle les particules hydrophobes s?agrègent. En dehors de cette région, les particules sont dissoutes dans l?eau. J?ai démontré que l?interaction hydrophobe est décrite par un modèle qui prend uniquement en compte les changements de structure de l?eau liquide en présence d?une particule hydrophobe, plutôt que les interactions directes entre les particules. Encouragée par ces résultats prometteurs, j?ai étudié des solutions aqueuses de particules hydrophobes en présence de co-solvants cosmotropiques et chaotropiques. Ce sont des substances qui stabilisent ou déstabilisent les agrégats de particules hydrophobes. La présence de ces substances peut être incluse dans le modèle en décrivant leur effet sur la structure de l?eau. J?ai pu reproduire la concentration élevée de co-solvants chaotropiques dans le voisinage immédiat de la particule, et l?effet inverse dans le cas de co-solvants cosmotropiques. Ce changement de concentration du co-solvant à proximité de particules hydrophobes est la cause principale de son effet sur la solubilité des particules hydrophobes. J?ai démontré que le modèle adapté prédit correctement les effets implicites des co-solvants sur les interactions de plusieurs corps entre les particules hydrophobes. En outre, j?ai étendu le modèle à la description de particules amphiphiles comme des lipides. J?ai trouvé la formation de différents types de micelles en fonction de la distribution des regions hydrophobes à la surface des particules. L?hydrophobicité reste également un sujet controversé en science des protéines. J?ai défini une nouvelle échelle d?hydrophobicité pour les acides aminés qui forment des protéines, basée sur leurs surfaces exposées à l?eau dans des protéines natives. Cette échelle permet une comparaison meilleure entre les expériences et les résultats théoriques. Ainsi, le modèle développé dans mon travail contribue à mieux comprendre les solutions aqueuses de particules hydrophobes. Je pense que les résultats analytiques et numériques obtenus éclaircissent en partie les processus physiques qui sont à la base de l?interaction hydrophobe.<br/><br/>Despite the importance of water in our daily lives, some of its properties remain unexplained. Indeed, the interactions of water with organic particles are investigated in research groups all over the world, but controversy still surrounds many aspects of their description. In my work I have tried to understand these interactions on a molecular level using both analytical and numerical methods. Recent investigations describe liquid water as random network formed by hydrogen bonds. The insertion of a hydrophobic particle at low temperature breaks some of the hydrogen bonds, which is energetically unfavorable. The water molecules, however, rearrange in a cage-like structure around the solute particle. Even stronger hydrogen bonds are formed between water molecules, and thus the solute particles are soluble. At higher temperatures, this strict ordering is disrupted by thermal movements, and the solution of particles becomes unfavorable. They minimize their exposed surface to water by aggregating. At even higher temperatures, entropy effects become dominant and water and solute particles mix again. Using a model based on these changes in water structure I have reproduced the essential phenomena connected to hydrophobicity. These include an upper and a lower critical solution temperature, which define temperature and density ranges in which aggregation occurs. Outside of this region the solute particles are soluble in water. Because I was able to demonstrate that the simple mixture model contains implicitly many-body interactions between the solute molecules, I feel that the study contributes to an important advance in the qualitative understanding of the hydrophobic effect. I have also studied the aggregation of hydrophobic particles in aqueous solutions in the presence of cosolvents. Here I have demonstrated that the important features of the destabilizing effect of chaotropic cosolvents on hydrophobic aggregates may be described within the same two-state model, with adaptations to focus on the ability of such substances to alter the structure of water. The relevant phenomena include a significant enhancement of the solubility of non-polar solute particles and preferential binding of chaotropic substances to solute molecules. In a similar fashion, I have analyzed the stabilizing effect of kosmotropic cosolvents in these solutions. Including the ability of kosmotropic substances to enhance the structure of liquid water, leads to reduced solubility, larger aggregation regime and the preferential exclusion of the cosolvent from the hydration shell of hydrophobic solute particles. I have further adapted the MLG model to include the solvation of amphiphilic solute particles in water, by allowing different distributions of hydrophobic regions at the molecular surface, I have found aggregation of the amphiphiles, and formation of various types of micelle as a function of the hydrophobicity pattern. I have demonstrated that certain features of micelle formation may be reproduced by the adapted model to describe alterations of water structure near different surface regions of the dissolved amphiphiles. Hydrophobicity remains a controversial quantity also in protein science. Based on the surface exposure of the 20 amino-acids in native proteins I have defined the a new hydrophobicity scale, which may lead to an improvement in the comparison of experimental data with the results from theoretical HP models. Overall, I have shown that the primary features of the hydrophobic interaction in aqueous solutions may be captured within a model which focuses on alterations in water structure around non-polar solute particles. The results obtained within this model may illuminate the processes underlying the hydrophobic interaction.<br/><br/>La vie sur notre planète a commencé dans l'eau et ne pourrait pas exister en son absence : les cellules des animaux et des plantes contiennent jusqu'à 95% d'eau. Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. En particulier, l'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Bien que l?eau soit généralement un bon solvant, un grand groupe de molécules, appelées molécules hydrophobes (du grecque "hydro"="eau" et "phobia"="peur"), n'est pas facilement soluble dans l'eau. Ces particules hydrophobes essayent d'éviter le contact avec l'eau, et forment donc un agrégat pour minimiser leur surface exposée à l'eau. Cette force entre les particules est appelée interaction hydrophobe, et les mécanismes physiques qui conduisent à ces interactions ne sont pas bien compris à l'heure actuelle. Dans mon étude j'ai décrit l'effet des particules hydrophobes sur l'eau liquide. L'objectif était d'éclaircir le mécanisme de l'interaction hydrophobe qui est fondamentale pour la formation des membranes et le fonctionnement des processus biologiques dans notre corps. Récemment, l'eau liquide a été décrite comme un réseau aléatoire formé par des liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure, certaines liaisons hydrogènes sont détruites tandis que les molécules d'eau s'arrangent autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l'eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise la structure de cage autour des particules hydrophobes. Maintenant, la dissolution des particules devient défavorable, et les particules se séparent de l'eau en formant deux phases. A très haute température, les mouvements thermiques dans le système deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d'eau. A l'aide d'un modèle qui décrit le système en termes de restructuration dans l'eau liquide, j'ai réussi à reproduire les phénomènes physiques liés à l?hydrophobicité. J'ai démontré que les interactions hydrophobes entre plusieurs particules peuvent être exprimées dans un modèle qui prend uniquement en compte les liaisons hydrogènes entre les molécules d'eau. Encouragée par ces résultats prometteurs, j'ai inclus dans mon modèle des substances fréquemment utilisées pour stabiliser ou déstabiliser des solutions aqueuses de particules hydrophobes. J'ai réussi à reproduire les effets dûs à la présence de ces substances. De plus, j'ai pu décrire la formation de micelles par des particules amphiphiles comme des lipides dont la surface est partiellement hydrophobe et partiellement hydrophile ("hydro-phile"="aime l'eau"), ainsi que le repliement des protéines dû à l'hydrophobicité, qui garantit le fonctionnement correct des processus biologiques de notre corps. Dans mes études futures je poursuivrai l'étude des solutions aqueuses de différentes particules en utilisant les techniques acquises pendant mon travail de thèse, et en essayant de comprendre les propriétés physiques du liquide le plus important pour notre vie : l'eau.