18 resultados para 2-sigma error


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherited metabolic disorders are the cause of a small but significant number of sudden unexpected deaths in infancy. We report a girl who suddenly died at 11 months of age, during an intercurrent illness. Autopsy showed spongiform lesions in the subcortical white matter, in the basal ganglia, and in the dentate nuclei. Investigations in an older sister with developmental delay, ataxia, and tremor revealed L-2-hydroxyglutaric aciduria and subcortical white matter changes with hyperintensity of the basal ganglia and dentate nuclei at brain magnetic resonance imaging. Both children were homozygous for a splice site mutation in the L2HGDH gene. Sudden death has not been reported in association with L-2-hydroxyglutaric aciduria so far, but since this inborn error of metabolism is potentially treatable, early diagnosis may be important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real time glycemia is a cornerstone for metabolic research, particularly when performing oral glucose tolerance tests (OGTT) or glucose clamps. From 1965 to 2009, the gold standard device for real time plasma glucose assessment was the Beckman glucose analyzer 2 (Beckman Instruments, Fullerton, CA), which technology couples glucose oxidase enzymatic assay with oxygen sensors. Since its discontinuation in 2009, today's researchers are left with few choices that utilize glucose oxidase technology. The first one is the YSI 2300 (Yellow Springs Instruments Corp., Yellow Springs, OH), known to be as accurate as the Beckman(1). The YSI has been used extensively for clinical research studies and is used to validate other glucose monitoring devices(2). The major drawback of the YSI is that it is relatively slow and requires high maintenance. The Analox GM9 (Analox instruments, London), more recent and faster, is increasingly used in clinical research(3) as well as in basic sciences(4) (e.g. 23 papers in Diabetes or 21 in Diabetologia). This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. DESIGN: Secondary data analysis. METHODS: Data from the International Children's Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. RESULTS: Across the total sample, mean MVPA ranged from 29.7MVPAmind(-1) (Puyau) to 126.1MVPAmind(-1) (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110mind(-1) (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76mind(-1) (LOA, -60.392 to 129.910). CONCLUSIONS: For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA.