386 resultados para Transient receptor potential proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE:: Based on experimental data showing that central serous chorioretinopathy could result from overactivation of mineralocorticoid receptor pathway in choroid vessels, the authors studied eplerenone, a mineralocorticoid receptor antagonist, as a potential treatment for chronic central serous chorioretinopathy. METHODS:: This nonrandomized pilot study included 13 patients with central serous chorioretinopathy of at least 4-month duration, treated with 25 mg/day of oral eplerenone for a week followed by 50 mg/day for 1 or 3 months. The primary outcome measure was the changes in central macular thickness recorded by optical coherence tomography, and the secondary outcomes included changes in foveal subretinal fluid (SRF) measured by OCT, in best-corrected visual acuity (BCVA) and the percentage of eyes achieving complete resolution of subretinal fluid during the treatment period. RESULTS:: Central macular thickness decreased significantly from 352 ± 139 μm at baseline to 246 ± 113 μm and 189 ± 99 μm at 1 and 3 months under eplerenone treatment (P < 0.05 and P < 0.01, respectively). At 3 months, the subretinal fluid significantly decreased compared with baseline subretinal fluid (P < 0.01) and best-corrected visual acuity significantly improved compared with baseline best-corrected visual acuity (P < 0.001). CONCLUSION:: Eplerenone treatment was associated with a significant reduction in central macular thickness, subretinal fluid level, and an improvement in visual acuity. Randomized controlled trials are needed to confirm these encouraging results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear hormone receptors called PPARs (peroxisome proliferator-activated receptors alpha, beta, and gamma) regulate the peroxisomal beta-oxidation of fatty acids by induction of the acyl-CoA oxidase gene that encodes the rate-limiting enzyme of the pathway. Gel retardation and cotransfection assays revealed that PPAR alpha heterodimerizes with retinoid X receptor beta (RXR beta; RXR is the receptor for 9-cis-retinoic acid) and that the two receptors cooperate for the activation of the acyl-CoA oxidase gene promoter. The strongest stimulation of this promoter was obtained when both receptors were exposed simultaneously to their cognate activators. Furthermore, we show that natural fatty acids, and especially polyunsaturated fatty acids, activate PPARs as potently as does the hypolipidemic drug Wy 14,643, the most effective activator known so far. Moreover, we discovered that the synthetic arachidonic acid analogue 5,8,11,14-eicosatetraynoic acid is 100 times more effective than Wy 14,643 in the activation of PPAR alpha. In conclusion, our data demonstrate a convergence of the PPAR and RXR signaling pathways in the regulation of the peroxisomal beta-oxidation of fatty acids by fatty acids and retinoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural tissue has historically been regarded as having poor regenerative capacity but recent advances in the growing fields of tissue engineering and regenerative medicine have opened new hopes for the treatment of nerve injuries and neurodegenerative disorders. Adipose tissue has been shown to contain a large quantity of adult stem cells (ASC). These cells can be easily harvested with low associated morbidity and because of their potential to differentiate into multiple cell types, their use has been suggested for a wide variety of therapeutic applications. In this review we examine the evidence indicating that ASC can stimulate nerve regeneration by both undergoing neural differentiation and through the release of a range of growth factors. We also discuss some of the issues that need to be addressed before ASC can be developed as an effective cellular therapy for the treatment of neural tissue disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell responses are regulated by activating and inhibiting signals. CD28 and its homologue, cytotoxic T-lymphocyte antigen 4 (CTLA-4), are the primary regulatory molecules that enhance or inhibit T-cell activation, respectively. Recently it has been shown that inhibitory natural killer (NK) cell receptors (NKRs) are expressed on subsets of T cells. It has been proposed that these receptors may also play an important role in regulating T-cell responses. However, the extent to which the NKRs modulate peripheral T-cell homeostasis and activation in vivo remains unclear. In this report we show that NK cell inhibitory receptor Ly49A engagement on T cells dramatically limits T-cell activation and the resultant lymphoproliferative disorder that occurs in CTLA-4-deficient mice. Prevention of activation and expansion of the potentially autoreactive CTLA-4(-/-) T cells by the Ly49A-mediated inhibitory signal demonstrates that NKR expression can play an important regulatory role in T-cell homeostasis in vivo. These results demonstrate the importance of inhibitory signals in T-cell homeostasis and suggest the common biochemical basis of inhibitory signaling pathways in T lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE(-/-)) and apoE(-/-)FAAH(-/-) mice. Anandamide levels were systemically elevated in apoE(-/-) mice after balloon injury. ApoE(-/-)FAAH(-/-) mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE(-/-) controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE(-/-) mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1(-/-) SMCs or when treating apoE(-/-) or apoE(-/-)FAAH(-/-) SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. While all three receptors are undetectable in adult mouse interfollicular epidermis, PPARbeta expression and activity is strongly re-activated by inflammatory stimuli during epidermal injury. The pro-inflammatory cytokine TNFalpha (tumour necrosis factor alpha) stimulates transcription of the PPARbeta gene via an activator protein-1 site in its promoter and it also triggers the production of PPARbeta ligands in keratinocytes. This increase of PPARbeta activity in these cells up-regulates the expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1, which phosphorylates protein kinase B-alpha (Akt1). The resulting increase in Akt1 activity suppresses apoptosis and ensures the presence of a sufficient number of viable keratinocytes at the wound margin for re-epithelialization. Together, these observations reveal that PPARbeta takes on multiple roles and contributes favourably to the process of wound closure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Activation of naïve T lymphocytes is essential for the onset of an adaptive immune response against a pathogenic threat. T lymphocytes are activated through the engagement of their highly specific cell surface antigen-receptor (TCR), together with co-stimulatory receptors, by activated antigen-presenting cells that display antigenic peptide fragments from the pathogen that they have detected. Dissection of the mechanisms that modulate TCR- and co-stimulation- induced signals is therefore crucial for the understanding of the molelcular basis of adaptive immune responses. Following antigen-receptor triggering, the Carma1, Bcl10 and Malt1 (CBM) proteins assemble into an oligomeric complex, which is essential for activation of the NF-κB and JNK signaling pathways in lymphocytes. In this work, by using human epithelial and lymphocytic cell lines, we identified the TNF-receptor-associated factor (TRAF) proteins TRAF3 and TRAF7 as new binding partners of Bcl10 and Carma1, respectively. We could show that TRAF3 is required for the proper transcriptional upregulation of IL-2 in activated T cells, and that endogenous TRAF3 is recruited to Bcl10 following TCR engagement. Although the mechanisms used by TRAF3 to modulate the transcriptional activation of the IL-2 promoter are not elucidated, the stimulus-dependent association ofTRAF3 with its direct binding partner Bcl10 suggests that TRAF3 is regulating Bcl10 function in TCR-activated lymphocytes. We also demonstrated that TRAF7 acts as a negative regulator of Carma1-induced NFκB-and AP1-dependent transcription by overexpression in 293T cells. These data suggest that TRAF7 could contribute to the negative regulation of TCR-dependent Carma1 functions. Finally, we showed that Carma1 is processed upon antigen-receptor triggering in B and T cell lines, as well as in primary human CTLs, and that this processing is dependent on the proteolytic activity of Malt1. Collectively, this work contributes to describe new proteins and regulatory mechanisms that modulate CBM-dependent functions in activated lymphocytes. Furthermore, it uncovers new tracks that could lead to a better molecular understanding of the complex interplay between the activatory and inhibitory regulators associated with the CBM complex. Résumé : L'activation des lymphocytes T naifs est une étape essentielle à la mise en place d'une réponse immunitaire adaptative pour combattre une infection. Après la détection d'un pathogène, les cellules présentatrices d'antigènes exposent à leur surface des fragments peptidiques provenant du pathogène, qui activent le récepteur à antigène (TCR) spécifique des lymphocytes T, ainsi que des molécules co-stimulatrices qui contribuent à l'activation complète des lymphocytes T. La caractérisation des mécanismes qui modulent les cascades de signaux émanant du TCR et des récepteurs de co-stimulation est essentielle à la compréhension du fonctionnement moléculaire de la réponse immunitaire adaptative. La ligation du TCR induit la formation d'un complexe oligomérique comprenant les protéines Carma1, Bcl10 et Malt1, qui est essentiel à l'activation des voies de signalisation cellulaires NF-κB et JNK induisant l'activation complète des lymphorctes T. Dans cette étude, à l'aide de lignées de cellules humaines épithéliales et lymphocytaires, nous avons identifié que deux protéines de la famille des TRAF (Tumor Necrosis Factor Receptor-Associated Factor), TRAF3 et TRAF7, s'associent à Bc110 et à Carma1, respectivement. Les TRAFs sont d'importants régulateurs des voies de signalisation dans les cellules du système immunitaire inné et adaptatif. Nous avons démontré que TRAF3 était important pour permettre la transcription de l'interleukine-2 (IL-2) dans les lymphocytes T activés, et que TRAF3 s'associait à Bc110 à la suite de la stimulation du TCR Les mécanismes que TRAF3 utilise pour moduler l'activation du promoteur de l'IL-2 ne sont pas connus, mais l'association de TRAF3 à Bc110 suite à la stimulation du TCR suggère que TRAF3 régule la fonction de Bc110. Nous avons également identifié TRAF7 comme un nouveau régulateur négatif des voies NF-κB et JNK induites par surexpression de la protéine Carma1. Nos données suggèrent que TRAF7 pourrait également contribuer à la régulation négative de la fonction de Carma1 dans les lymphocytes activés. Enfin, nous avons découvert que Carma1 était clivé suite à la stimulation du TCR, et que ce clivage dépendait de l'activité protéolytique de Malt1. Cette étude contribue ainsi à la description de nouvelles protéines et de nouveaux mécanismes qui modulent l'activité du complexe CBM dans les lymphocytes activés, et ouvre la voie à la caractérisation moléculaire de ces nouveaux mécanismes importants pour la régulation de la réponse immunitaire adaptative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha-1 adrenergic receptors (alpha(1)ARs) are critical in sympathetically mediated vasoconstriction. The specific role of each alpha(1)AR subtype in regulating vasoconstriction remains highly controversial. Limited pharmacological studies suggest that differential alpha(1)AR responses may be the result of differential activation of junctional versus extrajunctional receptors. We tested the hypothesis that the alpha(1B)AR subtype is critical in mediating sympathetic junctional neurotransmission. We measured in vivo integrated cardiovascular responses to a hypotensive stimulus (induced via transient bilateral carotid occlusion [TBCO]) in alpha(1B)AR knockout (KO) mice and their wild-type (WT) littermates. In WT mice, after dissection of the carotid arteries and denervation of aortic baroreceptor buffering nerves, TBCO produced significant pressor and positive inotropic effects. Both responses were markedly attenuated in alpha(1B)AR KO mice (change systolic blood pressure 46+/-8 versus 11+/-2 mm Hg; percentage change in the end-systolic pressure-volume relationship [ESPVR] 36+/-7% versus 12+/-2%; WT versus KO; P<0.003). In vitro alpha(1)AR mesenteric microvascular contractile responses to endogenous norepinephrine (NE; elicited by electrical field stimulation 10 Hz) was markedly depressed in alpha(1B)AR KO mice compared with WT (12.4+/-1.7% versus 21.5+/-1.2%; P<0.001). In contrast, responses to exogenous NE were similar in alpha(1B)AR KO and WT mice (22.4+/-7.3% versus 33.4+/-4.3%; NS). Collectively, these results demonstrate a critical role for the alpha(1B)AR in baroreceptor-mediated adrenergic signaling at the vascular neuroeffector junction. Moreover, alpha(1B)ARs modulate inotropic responses to baroreceptor activation. The critical role for alpha(1B)AR in neuroeffector regulation of vascular tone and myocardial contractility has profound clinical implications for designing therapies for orthostatic intolerance.