293 resultados para Root-formation
Resumo:
Authigenic phosphorites from the Miocene Monterey Formation (California) including an autochthonous phosphatic laminite were analyzed for molecular biomarkers, element content, and sulfur isotopic composition of associated pyrite and sulfate to evaluate the role of bacterial activity in the precipitation of phosphate minerals. The phosphorites formed in a depositional environment typified by upwelling with dynamic bottom currents and hardground formation. Pyrite enclosed in the phosphorites shows delta S-34 values as low as -36.5 parts per thousand VCDT, which is consistent with bacterial sulfate reduction. In a three-step extraction phosphorite dissolution extraction procedure, molecular fossils of sulfate-reducing bacteria (di-O-alkyl glycerol ethers and short-chain branched fatty acids i- and ai-C-15:0, i- and ai-C-17:0, and 10MeC(16:0)) were preferentially released from the mineral lattice. This suggests that the molecular fossils were tightly bound to carbonate fluorapatite, indicating that sulfate-reducing bacteria were involved in mineral formation. A close association of sulfate-reducing bacteria with large sulfide-oxidizing bacteria, which was previously suggested to favor carbonate fluorapatite precipitation, could neither be confirmed nor excluded for the Miocene Monterey Formation phosphorites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.
Resumo:
The late Early Cretaceous greenhouse climate has been studied intensively based on proxy data derived essentially from open marine archives. In contrast, information on continental climatic conditions and on the accompanying response of vegetation is relatively scarce, most notably owing to the stratigraphic uncertainties associated with many Lower Cretaceous terrestrial deposits. Here, we present a palynological record from Albian near-shore deposits of the Lusitanian Basin of W Portugal, which have been independently dated using Sr-isotope signals derived from low-Mg oyster shell calcite. Sr-87/Sr-86 values fluctuate between 0.707373 +/- 0.00002 and 0.707456 +/- 0.00003; absolute values and the overall stratigraphic trend match well with the global open marine seawater signature during Albian times. Based on the new Sr-isotope data, existing biostratigraphic assignments of the succession are corroborated and partly revised. Spore-pollen data provide information on the vegetation community structure and are flanked by sedimentological and clay mineralogical data used to infer the overall climatic conditions prevailing on the adjacent continent. Variations in the distribution of climate-sensitive pollen and spores indicate distinct changes in moisture availability across the studied succession with a pronounced increase in hygrophilous spores in late Early Albian times. Comparison with time-equivalent palynofloras from the Algarve Basin of southern Portugal shows pronounced differences in the xerophyte/hygrophyte ratio, interpreted to reflect the effect of a broad arid climate belt covering southern and southeastern Iberia during Early Albian times.
Resumo:
We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.
Resumo:
Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.
Resumo:
Casparian strips are ring-like cell-wall modifications in the root endodermis of vascular plants. Their presence generates a paracellular barrier, analogous to animal tight junctions, that is thought to be crucial for selective nutrient uptake, exclusion of pathogens, and many other processes. Despite their importance, the chemical nature of Casparian strips has remained a matter of debate, confounding further molecular analysis. Suberin, lignin, lignin-like polymers, or both, have been claimed to make up Casparian strips. Here we show that, in Arabidopsis, suberin is produced much too late to take part in Casparian strip formation. In addition, we have generated plants devoid of any detectable suberin, which still establish functional Casparian strips. In contrast, manipulating lignin biosynthesis abrogates Casparian strip formation. Finally, monolignol feeding and lignin-specific chemical analysis indicates the presence of archetypal lignin in Casparian strips. Our findings establish the chemical nature of the primary root-diffusion barrier in Arabidopsis and enable a mechanistic dissection of the formation of Casparian strips, which are an independent way of generating tight junctions in eukaryotes.
Resumo:
Primary sensory neurons were grown under four conditions of culture. The influence of nonneuronal cells, horse serum or both was studied on the phenotypic expression of certain neuronal subpopulations. The number of neurons expressing acetylcholinesterase, alpha-bungarotoxin-binding sites or a high uptake capacity for glutamine was enhanced by nonneuronal cells. The horse serum increases the neuronal subpopulation exhibiting a carbonic anhydrase activity. Certain phenotypic changes fit conditions consistent with an epigenetic induction rather than a cell selection.
Resumo:
Sudden death related to out-of hospital cardiac arrest is an important cause of mortality, which is mainly caused by ventricular fibrillation, a potentially reversible condition. The prognosis of out-of-hospital cardiac arrest remains dismal despite well developed emergency medical services. Witnessed arrest, ventricular fibrillation as the initial arrhythmia, cardiopulmonary resuscitation and early defibrillation are systematically associated with better survival. Key interventions must therefore be enforced to improve survival from out-of-hospital cardiac, introducing the concept of a "chain of survivals". The aim of the present article, which is illustrated by local results, is to review this important public health issue, to emphasize the role of the general practitioner in the chain of survival, and to promote education and training of basic and advanced life support.
Resumo:
Environmental enrichment paradigms in adult laboratory animals, consisting of physical, perceptual, and social stimulation, have been shown to affect synapse and cell morphology in sensory cortex and enhance learning ability, whereas enrichment, which is in harmony with the animal's natural habitat may have even greater implications for plasticity. Previous studies in our laboratory have shown that whisker stimulation induced the formation of synapses and spines in the corresponding barrel. In the present study adult C57/Bl6J female laboratory mice at 6 weeks of age were placed during 2 months in a protected enrichment enclosure in a forest clearing at the Chisti Les Biological Station, Tvier, Russia. We analyzed neuropil ultrastructure in the C2 barrel using serial-section electron microscopy on a total of eight mice (n=4 enriched, n=4 standard cagemate controls). Quantitative analyses of volumes of neuropil showed a significant increase in excitatory and inhibitory synapses on spines and excitatory synapses on dendritic shafts in the C2 barrel in the enriched group compared with standard cagemate controls. These results demonstrate that naturalistic experience alters the synaptic circuitry in layer IV of the somatosensory cortex, the first cortical relay of sensory information, leaving a lasting trace that may guide subsequent behavior.
Resumo:
Primary roots of intact maize seedlings (cv. LG11) were pretreated when kept vertically (1 or 2 in the dark) with a droplet of buffer solution containing ABA (at different concentrations) applied to the root tip. Then, apical root segments were prepared and placed horizontally in both light and darkness. The downward curvature was measured. In the light, curvature was greater than in darkness and ABA (5×10−5 mol·dm−3) significantly enhanced the curvature in both darkness and light. The amplitude of the increase in the gravireaction was found to be dependent on the ABA concentration and the duration of the pretreatment.
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.