278 resultados para Plaletet-Rich Plasma
Resumo:
Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies.
Resumo:
Background: Microparticles are small phospholipid vesicles of <1 lm shed in blood flow by various cell types including red blood cells. Erythrocyte-derived microparticles (EMPs) accumulate in erythrocyte concentrates (ECs) during their storage time. EMPs are considered as part of storage lesion and as their exact role is not elucidated, they could be involved in these clinical outcomes. Aims: The aim of this study is to evaluate the impact and implication of EMPs isolate from ECs on coagulation. Methods: EMPs were first isolated from erythrocyte concentrates by centrifugation and counted by flow cytometry. Using a calibrated automated thrombogram, EMPs were then added to different type of plasmas in order to evaluate the potential of thrombin generation. Results: We demonstrate that EMPs isolated from ECs are capable to accelerate and amplify thrombin generation in presence of a low exogenous tissue factor concentration, thanks to their negatively charged membrane necessary for the assembly of coagulation complexes. Interestingly, in the absence of exogenous tissue factor, EMPs are also able to trigger thrombin generation. In addition, thrombin generation induced by EMPs is not affected by the presence of anti-TF antibodies. Finally, thrombin generation induced by EMPs is not affected by using plasma samples deficient in factor VII, XI or XII. However, thrombin generation is reduced in plasma deficient in factor VIII or IX and is completely abolished in plasma deficient in factor X, V or II. No thrombin generation was observed in plasma samples without EMPs. Summary/conclusion: Several studies have shown a link between storage time of blood products and post transfusion complications. We provide evidence that EMPs accumulated during storage of erythrocyte concentrates were not only able to accelerate and support thrombin generation in plasma in presence of a low exogenous tissue-factor concentration, but also to trigger thrombin generation in absence of exogenous TF. The impact of those transfused EMs is unknown on recipients, nevertheless it could be hypothesized that under certain circumstances, transfused EMPs could be involved in thrombin generation and could be linked to adverse clinical outcome. Further work is needed to determine whether procoagulant EMPs transfused with erythrocyte concentrate may account for some of the complications occurring after red blood cell transfusion, and more particularly after transfusion of ''older''stored blood, rich in EMPs.
Resumo:
Renal denervation can reduce blood pressure in patients with uncontrolled hypertension. The adherence to prescribed antihypertensive medication following renal denervation is unknown. This study investigated adherence to prescribed antihypertensive treatment by liquid chromatography-high resolution tandem mass spectrometry in plasma and urine at baseline and 6 months after renal denervation in 100 patients with resistant hypertension, defined as baseline office systolic blood pressure ≥140 mmHg despite treatment with ≥3 antihypertensive agents. At baseline, complete adherence to all prescribed antihypertensive agents was observed in 52 patients, 46 patients were partially adherent, and two patients were completely non-adherent. Baseline office blood pressure was 167/88 ± 19/16 mmHg with a corresponding 24-h blood pressure of 154/86 ± 15/13 mmHg. Renal denervation significantly reduced office and ambulatory blood pressure at 6-month follow-up by 15/5 mmHg (p < 0.001/p < 0.001) and 8/4 mmHg (p < 0.001/p = 0.001), respectively. Mean adherence to prescribed treatment was significantly reduced from 85.0 % at baseline to 80.7 %, 6 months after renal denervation (p = 0.005). The blood pressure decrease was not explained by improvements in adherence following the procedure. Patients not responding to treatment significantly reduced their drug intake following the procedure. Adherence was highest for angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and beta blockers (>90 %) and lowest for vasodilators (21 %). In conclusion, renal denervation can reduce office and ambulatory blood pressure in patients with resistant hypertension despite a significant reduction in adherence to antihypertensive treatment after 6 months.
Resumo:
Dans le néphron distal sensible à l'aldostérone, le récepteur aux minéralocorticoïdes (RM) et le récepteur aux glucocorticoids (RG) sont exprimés et peuvent être liés et activés par l'aldostérone et le Cortisol, respectivement. La réabsorption rénale de sodium est principalement contrôlée par le RM. Cependant, des modèles expérimentaux in vitro et in vivo suggèrent que le RG pourrait également jouer un rôle dans le transport rénal du sodium. Afin d'étudier l'implication du RG et/ou du RM exprimés dans les cellules épithéliales adultes dans le transport rénal du sodium, nous avons généré deux modèles de souris, dans lesquelles l'expression du RG (Nr3c1Pax8/LC1) ou du RM (Nr3c2Pax8/LC1) peut être abolie de manière inductible et cela spécifiquement dans les tubules rénaux. Les souris déficientes pour le gène du RM survivent mais développent un phénotype sévère de PHA-1, caractérisé par un retard de croissance, une augmentation des niveaux urinaires de Na+, une diminution de la concentration du Na+ dans le plasma, une hyperkaliémie et une augmentation des niveaux d'aldostérone plasmatique. Ce phénotype empire et devient létal lorsque les souris sont nourries avec une diète déficiente en sodium. Les niveaux d'expression en protéine de NCC, de la forme phosphorylée de NCC et de aENaC sont diminués, alors que l'expression en ARN messager et en protéine du RG est augmentée. Une diète riche en Na+ et pauvre en K+ ne corrige pas la concentration élevée d'aldostérone dans le plasma pour la ramener à des niveaux conformes, mais est suffisante pour corriger la perte de poids et les niveaux anormaux des électrolytes dans le plasma et l'urine. -- In the aldosterone-sensitive distal nephron, both the mineralocorticoid (MR) and the glucocorticoid (GR) receptor are expressed. They can be bound and activated by aldosterone and Cortisol, respectively. Renal Na+ reabsorption is mainly controlled by MR. However, in vitro and in vivo experimental models suggest that GR may play a role in renal Na+ transport. Therefore, to investigate the implication of MR and/or GR in adult epithelial cells in renal sodium transport, we generated inducible renal tubule- specific MR (Nr3c2Pax8/LC1) and GR (Nr3c1Pax8/LC1) knockout mice. MR-deficient mice survived but developed a severe PHA-1 phenotype with failure to thrive, higher urinary Na+, decreased plasma Na+ levels, hyperkalemia and higher levels of plasma aldosterone. This phenotype further worsened and became lethal under a sodium-deficient diet. NCC protein expression and its phosphorylated form, as well as aENaC protein level were downregulated, whereas the mRNA and protein expression of GR was increased. A diet rich in Na+and low in K+ did not normalize plasma aldosterone to control levels, but was sufficient to restore body weight, plasma and urinary electrolytes. Upon switch to a Na+-deficient diet, GR-mutant mice exhibited transient increased urinary Na+ and decreased K+ levels, with transitory higher plasma K+ concentration preceded by a significant increase in plasma aldosterone levels within the 12 hours following diet switch. We found no difference in urinary aldosterone levels, plasma Na+ concentration and plasma corticosterone levels. Moreover, NHE3, NKCC2, NCC
Resumo:
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.
Resumo:
Female gender and low income are two markers for groups that have been historically disadvantaged within most societies. The study explores two research questions related to their political representation: 1) Are parties ideologically biased towards the ideological preferences of male and rich citizens? 2) Does the proportionality of the electoral system moderate the degree of underrepresentation of women and poor citizens in the party system? A multilevel analysis of survey data from 24 parliamentary democracies indicates that there is some bias against those with low income and, at a much smaller rate, women. This has systemic consequences for the quality of representation, as the preferences of the complementary groups differ. The proportionality of the electoral system influences the degree of underrepresentation: specifically, larger district magnitudes help closing the considerable gap between rich and poor.