292 resultados para MITOCHONDRIAL RIBOSOMAL-PROTEINS
Resumo:
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Resumo:
α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.
Resumo:
MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.
Resumo:
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.
Resumo:
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Resumo:
In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species.
Resumo:
Summary Multicellular organisms have evolved the immune system to protect from pathogen such as viruses, bacteria, fungi or parasites. Detection of invading pathogens by the host innate immune system is crucial for mounting protective responses and depends on the recognition of microbial components by specific receptors. The results presented in this manuscript focus on the signaling pathways involved in the detection of viral infection by the sensing of viral nucleic acids. First, we describe a new regulatory mechanism controlling RNA-sensing antiviral pathways. Our results indicate that TRIF and Cardif, the crucial adaptor proteins for endosomal and cytoplasmic RNA detection signaling pathway, are processed and inactivated by caspases. The second aspect investigated here involves a signaling pathway triggered upon cytosolic DNA sensing. The interferon inducible protein DAI was recently described as a DNA sensor able to induce the activation of IRFs and NF-κΒ transcription factors leading to type I interferon production. Here we identify two RIP homotypic interaction motifs (RHIMs) in DAI and demonstrate that they mediate the recruitment of RIP1 and RIP3 and the subsequent NF-κΒ activation. Moreover, we observed that the mouse cytomegalovirus RHIM- containing protein M45 has the potential to block this signaling cascade by interfering with the formation of the DAI-RIP1/3 signaling complex. Finally, we report the generation and the initial characterization of NLRX1-deficient mice. NLRX1 is a member of the NOD-like receptor family localized to the mitochondria. The function of NLRX1 is still controversial: one study proposed that NLRX1 acts as an inhibitor of the RIG-like receptor (RLR) antiviral pathway by binding the adaptor protein Cardif, whereas another report implicated NLRX1 in the generation of reactive oxygen species (ROS) and the amplification of NF-κΒ and JNK triggered by TNF-α, poly(I:C) or Shigella infection. Collectively, our results indicate that NLRX1-deficiency does not affect RLR signaling nor TNF-α induced responses. Proteomics analysis identified UQCRC2, a subunit of the complex III of the mitochondrial respiratory chain, as a NLRX1 binding partner. This observation might reveal a possible functional link between NLRX1 and mitochondrial respiration and/or ROS generation. Résumé Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de se protéger contre les pathogènes. Une étape cruciale pour le déclenchement des réponses protectrices est la reconnaissance par les cellules du système immunitaire de molécules propres aux microbes grâce à des récepteurs spécifiques. Les résultats présentés dans cette thèse décrivent des nouveaux aspects concernant les voies de signalisation impliquées dans la détection des virus. Le premier projet décrit un mécanisme de régulation des voies activées par la détection d'ARN virale. Nos résultats montrent que TRIF et Cardif, des protéines adaptatrices des voies déclenchées par la reconnaissance de ces acides nucléiques au niveau des endosomes et du cytoplasme, sont clivés et inactivés par les caspases. Le projet suivant de notre recherche concerne une voie de signalisation activée par la détection d'ADN au niveau du cytoplasme. La protéine DAI a été récemment décrite comme un senseur pour cet ADN capable d'activer les facteurs de transcription IRF et NF-κΒ et d'induire ainsi la production des interférons de type I. Ici on démontre que DAI interagit avec RIP1 et RIP3 par le biais de domaines appelés RHIM et que ce complexe est responsable de l'activation de NF-κΒ. On a aussi identifié une protéine du cytomégalovirus de la souris, M45, qui contient ce même domaine et on a pu démontrer qu'elle a la capacité d'interférer avec la formation du complexe entre DAI et RIP1/RIP3 bloquant ainsi l'activation de NF-κΒ. Enfin on décrit ici la génération de souris déficientes pour le gène qui code pour la protéine NLRX1. Cette protéine fait partie de la famille des récepteurs NOD et est localisée dans la mitochondrie. Une étude a suggéré que NLRX1 agit comme un inhibiteur des voies antivirales activées par les récepteurs du type RIG-I (RLR) en interagissant avec la protéine adaptatrice Cardif. Une autre étude propose par contre que NLRX1 participe à la production des dérivés réactifs de l'oxygène et contribue ainsi à augmenter l'activation de NF- κΒ et JNK induite par le TNF-α ou le poly(I:C). Nos résultats montrent que l'absence de NLRX1 ne modifie ni la voie de signalisation RLR ni les réponses induites par le TNF-α. Des analyses ultérieures ont permis d'identifier comme partenaire d'interaction de NLRX1 la protéine UQCRC2, une des sous-unités qui composent le complexe III de la chaîne respiratoire mitochondriale. Cette observation pourrait indiquer un lien fonctionnel entre NLRX1 et la respiration mitochondriale ou la production des dérivés réactifs de l'oxygène au niveau de cette organelle.
Resumo:
Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.
Resumo:
The nose-horned viper (Vipera ammodytes) occurs in a large part of the south-eastern Europe and Asia Minor. Phylogenetic relationships were reconstructed for a total of 59 specimens using sequences from three mitochondrial regions (16S and cytochrome b genes, and control region, totalling 2308 bp). A considerable number of clades were observed within this species, showing a large genetic diversity within the Balkan peninsula. Splitting of the basal clades was evaluated to about 4 million years ago. Genetic results are in contradiction with presently accepted taxonomy based on morphological characters: V. a. gregorwallneri and V. a. ruffoi do not display any genetic difference compared with the nominotypic subspecies (V. a. ammodytes), involving that these subspecies can be regarded as synonyms. High genetic divergence in the central part of the Balkan peninsula is not concordant with low morphological differentiation. Finally, the extensive genetic diversity within the Balkan peninsula and the colonisation routes are discussed
Resumo:
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.
Resumo:
Protein oxidation mechanisms result in a wide array of modifications, from backbone cleavage or protein crosslinking to more subtle modifications such as side chain oxidations. Protein oxidation occurs as part of normal regulatory processes, as a defence mechanism against oxidative stress, or as a deleterious processes when antioxidant defences are overcome. Because blood is continually exposed to reactive oxygen and nitrogen species, blood proteomics should inherently adopt redox proteomic strategies. In this review, we recall the biochemical basis of protein oxidation, review the proteomic methodologies applied to analyse redox modifications, and highlight some physiological and in vitro responses to oxidative stress of various blood components.
Resumo:
First trimester biochemical trisomy screening is based on serum concentrations of pregnancy-associated plasma protein A (PAPP-A) and human chorionic gonadotrophin (hCG). Our aim was to confirm previously suggested modifications in serum marker concentrations after in vitro fertilisation (IVF) and embryo transfer (ET), and to assess the need of establishing normal medians for trisomy screening in these. We compared 56 singleton pregnancies obtained after ET (of which 40 in gonadotrophin stimulation cycles) with 120 gestation-matched spontaneous controls. For multiple pregnancies, 17 treated cycles were compared with 25 controls. The levels of PAPP-A, hCG, and pregnancy-specific β1-glycoprotein were determined and compared between treated and spontaneous pregnancies. Serum PAPP-A levels were reduced in pregnancies achieved after gonadotrophin-stimulated IVF and ET, and this was more pronounced in earlier gestational stages. SP1 followed the same trend, while hCG tended to be increased, and this not only in pregnancies obtained from gonadotrophin-stimulated but also from oestrogen supported cycles, and with a more pronounced effect in the later gestational ages examined here. Decreased PAPP-A together with increased hCG concentrations produce falsely elevated results in first trimester Down syndrome screening, but we do not recommend the establishment of normal medians for IVF pregnancies due to the variations in stimulation protocols.
Resumo:
Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
Resumo:
Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.