377 resultados para Inbred Mice
Resumo:
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.
Resumo:
The cell surface receptor Fas (Apo-1/CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in activation-induced death of mature T cells and in killing mediated by cytolytic T cells. The role of the Fas pathway in apoptosis associated with thymic selection events is, however, controversial. Although Fas and FasL are known to be expressed in the thymus, the nature and in vivo localization of FasL-expressing cells have not been determined. Using recently developed anti-FasL Abs in combination with in situ hybridization on tissue sections, we show in this work that FasL-expressing cells are present in the thymus, particularly within the medulla. FasL mRNA was detected readily in thymic stromal cell extracts, but not in isolated thymocytes. Moreover, immunohistochemical analysis of serial tissue sections stained with Abs against FasL in conjunction with epithelial and dendritic cell markers indicated that both thymic epithelial and dendritic cells express FasL in situ. The coexistence of FasL-expressing stromal cells and Fas-expressing thymocytes may have important implications for the role of the Fas pathway in apoptosis associated with thymic selection events.
Resumo:
Herpes simplex ocular infection is a major cause of corneal blindness. Local antiviral treatments exist but are associated with corneal toxicity, and resistance has become an issue. We evaluated the biodistribution and efficacy of a humanized anti-herpes simplex virus (anti-HSV) IgG FAb fragment (AC-8; 53 kDa) following repeated topical administration. AC-8 was found in the corneal epithelium, anterior stroma, subepithelial stromal cells, and retinal glial cells, with preferential entry through the ocular limbus. AC-8 was active against 13 different strains of HSV-1, with 50% and 90% mean effective concentrations (MEC(50) and MEC(90), respectively) ranging from 0.03 to 0.13 μg/ml, indicating broad-spectrum activity. The in vivo efficacy of AC-8 was evaluated in a mouse model of herpes-induced ocular disease. Treatment with low-dose AC-8 (1 mg/ml) slightly reduced the ocular disease scores. A greater reduction of the disease scores was observed in the 10-mg/ml AC-8-treated group, but not as much as with trifluridine (TFT). AC-8 treatment reduced viral titers but less than trifluridine. AC-8 did not display any toxicity to the cornea or other structures in the eye. In summary, topical instillation of an anti-HSV FAb can be used on both intact and ulcerated corneas. It is well tolerated and does not alter reepithelialization. Further studies to improve the antiviral effect are needed for AC-8 to be considered for therapeutic use.
Resumo:
Mice from most inbred strains are resistant to infection with Leishmania major whereas mice from BALB strains are highly susceptible. Resistance and susceptibility result from the development of Th1 or Th2 cells, respectively. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Th1 cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4(+) T cells from IL-2(-/-) BALB/c mice showed that triggering of the early IL-4 response required autocrine IL-2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4(+) T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2.
Resumo:
We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.
Resumo:
Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Resumo:
Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.
Resumo:
A particular feature of gammadelta T cell biology is that cells expressing T cell receptor (TCR) using specific Vgamma/Vdelta segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all gammadelta T cells express Vgamma3/Vdelta1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vgamma3+ thymocytes. The role of gammadelta TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR delta chain (Vdelta6.3-Ddelta1-Ddelta2-Jdelta1-Cdelta), which can pair with Vgamma3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vdelta6.3Tg mice DETC were present and virtually all of them express Vdelta6.3. However, DETC were absent in TCR-delta(-/-) Vdelta6.3Tg mice, despite the fact that Vdelta6.3Tg gammadelta T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vdelta6.3Tg mice, a high proportion of in-frame Vdelta1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-delta (most probably Vdelta1) was required for the development of Vdelta6.3+ epidermal gammadelta T cells. Collectively our data demonstrate that TCR specificity is essential for the development of gammadelta T cells in the epidermis. Moreover, they show that the TCR-delta locus is not allelically excluded.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen (SAg) that predominantly interacts with V(beta)8+ T cells. In vivo treatment of mice with SEB leads to an initial increase in the percentage of V(beta)8+ T cells, followed by a decrease in the numbers of these cells, eventually reaching lower levels than those found before treatment with the SAg. This decrease is due to apoptosis of the SEB-responding cells. In the present study, we use the distinct light scattering characteristics of apoptotic cells to characterize T cells that are being deleted in response to SEB in vivo. We show that dying, SEB-reactive T cells express high levels of Fas and Fas ligand (Fas-L), which are implicated in apoptotic cell death. In addition, the B cell marker B220 is upregulated on apoptotic cells. Moreover, we show that the generation of cells with an apoptotic phenotype is severely impaired in response to SEB in functional Fas-L-deficient mutant gld mice, confirming the role of the Fas pathway in SAg mediated peripheral deletion in vivo.
Resumo:
In my first project, I analyzed the role of the amiloride-sensitive epithelial sodium channel ENaC) in the skin during wound healing. ENaC is present in the skin and a function in keratinocyte differentiation and barrier formation has been demonstrated. Previous findings suggested, that ENaC might be implicated in keratinocyte migration, although its role in wound healing was not analyzed yet. Using skin-specific (K14-Cre) conditional ENaC knockout and overexpressing mice, I determined the wound closure kinetic and performed morphometric measurements. The time course of wound repair was not significantly different in knockouts or transgenics when compared to control mice and the morphology of the closing wound was not altered. In my second project, I studied the glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ is widely expressed and an important role has been predicted in immunity, adipogenesis and renal sodium handling. Mice were generated that constitutively lack all the functional domains of the Gilz gene. In these mice, the expression of GILZ mRNA transcripts and protein were completely abolished in all tissues tested. Surprisingly, knockout mice survived. To test whether GILZ mimicks glucocorticoid action, we studied its implication in T- and B- cell development and in a model of sepsis. We measured cytokine secretion in different inflammatory models, like in peritoneal and bone marrow-derived macrophages, in splenocytes and a model of sepsis. In all our experiments, cytokine secretion from GILZ- deficient cells was not different from controls. From 6 months onwards, knockout mice contained significantly less body fat and were lighter. Following sodium and water deprivation experiments, water and salt homeostasis was preserved. Sterility of knockout males was associated with a severe testis dysplasia, smaller seminiferous tubules, the number of Sertoli and germ cell was reduced while increased apoptosis, but not cell proliferation, was evidenced. The interstitial Leydig cell population was augmented, and higher plasma FSH and testosterone levels were found. Interestingly, the expression of the target gene Ppar2 was diminished in the testis and in the liver, but not in the skin, kidney or fat. Tsc22d1 mRNA transcript level was found to be upregulated in testis, but not in the kidney or fat tissue. In most tissue, excepted the testis, GILZ-deficient mice reveal functional redundancy amongst members of the Tsc22d family or genes involved in the same regulatory pathways. In summary, contrarily to the published in vitro data, GILZ does not play a crucial role attributed in immunology or inflammation, but we identified a novel function in spermatogenesis. -- Dans mon premier projet, j'ai analysé le rôle du canal épithélial sodique sensible à l'amiloride (ENaC) dans la cicatrisation de la peau. ENaC est présent dans la peau et il a une fonction dans la différenciation des kératinocytes et dans la formation de la barrière. Des études suggèrent qu'ENaC pourrait être impliqué dans la migration des kératinocytes, cependant, son rôle dans la cicatrisation n'a pas encore été étudié. A l'aide de souris qui surexpriment ou qui sont knockout pour ENaC, spécifiquement dans la peau (K14-Cre), j'ai analysé le temps de clôture de la cicatrice et j'ai aussi étudié la morphologie de la plaie guérissant. Chez les souris qui surexpriment ou chez les knockouts, la vitesse de fermeture et la morphologie de la cicatrice étaient identiques aux souris contrôles. Dans mon second projet, j'ai étudié le glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ est largement exprimé et un rôle important a été prédit dans l'immunité, l'adipogénèse et le transport sodique rénal. Des souris ont été générées dont les domaines fonctionnels du gène Gilz sont éliminés. L'expression de GILZ en ARNm et protéine a été complètement abolie dans tous les tissus testés. Étonnamment, ces souris knockout survivent. Afin de tester si GILZ imite les effets des glucocorticoïdes, nous avons étudié son implication dans le développement des cellules T et B ainsi qu'un modèle de septicémie. Nous avons mesuré la sécrétion de cytokines à partir de différents modèles d'inflammation tels que des macrophages péritonéaux ou de moelle, de splénocytes ou encore d'un modèle de septicémie. Dans toutes nos expériences, la sécrétion de cytokines de cellules GILZ-déficientes était semblable. Dès 6 mois, les knockouts contenaient significativement moins de graisses et étaient plus légères. Suite à une privation sodique et aqueuse, l'homéostasie du sel et de l'eau était préservée. Les mâles knockouts présentaient une stérilité accompagnée d'une dysplasie testiculaire sévère, de tubules séminifères étaient plus petits et contenaient un nombre réduit de cellules de Sertoli et de cellules germinales. L'apoptose était augmentée dans ces cellules mais pas la prolifération cellulaire. Le nombre de cellules de Leydig était aussi plus élevé, ainsi que la FSH et la testostérone. L'expression du gène cible Pparγ2 était diminuée dans le testicule et le foie, mais pas dans la peau, le rein ou le tissu adipeux. L'ARNm de Tsc22d1 était plus exprimé dans le testicule, mais pas dans le rein ou le tissu adipeux. Dans la plupart des tissus, sauf le testicule, les souris knockouts révélaient une redondance fonctionnelle des autres membres de la famille Tsc22d ou de gènes impliqués dans les mêmes voies de régulation. En résumé, contrairement aux données in vitro, GILZ ne joue pas un rôle essentiel en immunologie, mais nous avons identifié une nouvelle fonction dans la spermatogénèse.
Resumo:
In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.
Resumo:
BACKGROUND: We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. RESULTS: In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. CONCLUSION: These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.
Resumo:
Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.
Resumo:
We have previously identified a mAb that binds to a molecule expressed preferentially on the surface of cycling thymocytes. In this study the molecule recognized by this mAb has been identified in the mouse as CD147 (basigin) by expression cloning. We show that CD147 expression correlates with cycling of immature thymocytes even in the absence of TCRbeta selection and that ligation of this molecule on immature fetal thymocytes inhibits their further development into mature T cells.
Resumo:
The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.