296 resultados para Flow quantification
Resumo:
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.
Resumo:
The gold mineralization of the Hutti Mine is hosted by nine parallel, N - S trending, steeply dipping, 2 - 10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D, shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle-ductile D-3 shearing and intense quartz veining. The development of a S-2-S-3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D, shearing is associated with a pervasively developed distal chlorite - sed cite alteration assemblage in the outer parts of the shear zones and the proximal biotite-plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S-3. The average size of the laminated vein systems is 30-50 m along strike as well as down-dip and 2-6 m in width. Mass balance calculations suggest strong metasomatic changes for the proximal biotite-plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite-sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in 6180 values of the whole rock from around 7.5 parts per thousand for the host rocks to 6-7 parts per thousand for the distal chlorite-sericite and the proximal biotite-plagioclase alteration and around 5 parts per thousand for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow. The ductile D-2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold-sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of preexisting anisotropies for fault-valve action and economic gold mineralization. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
RESUME Les maladies cardio-vasculaires représentent la cause la plus importante de mortalité et de morbidité dans les pays occidentaux. La thérapie génique offre une nouvelle approche au traitement de ces maladies. L'expression de gènes protecteurs dans le myocarde par des technologies de transfert génique peut améliorer la fonction ventriculaire lors de l'insuffisance cardiaque ou stimuler la formation de nouveaux vaisseaux dans la maladie coronarienne. Etant donné qu'une majorité des maladies cardiaques sont des maladies chroniques, l'expression durable du gène thérapeutique introduit dans le coeur est souhaitable dans de nombreux cas. Malheureusement, l'utilité des vecteurs de transfert génique les plus utilisés en thérapie génique cardiovasculaire est limitée par une performance faible (ADN plasmidique) et une courte durée d'expression (adénovirus). Récemment, des vecteurs de transfert génique dérivés des lentivirus, une sous-famille des rétrovirus, ont retenu l'attention de la communauté scientifique en raison de leur capacité à exprimer des gènes à long terme. Contrairement aux vecteurs rétroviraux traditionnels, les vecteurs lentiviraux transduisent des gènes même dans des cellules qui ne se divisent pas, ce qui est le cas des cardiomyocytes adultes. Ces vecteurs présentent un profil de biosécurité comparable à celui des vecteurs rétroviraux traditionnels. Nous avons donc décidé de tester l'utilité des vecteurs lentiviraux pour le transfert génique dans des cardiomyocytes de rat adulte in vitro et in vivo. Plusieurs versions de vecteurs lentiviraux contenant différent promoteurs ont été construites. Ces vecteurs contenant le gène marqueur EGFP (enhanced green fluorescent protein) ont été testés dans des cardiomyocytes de rat in vitro, ainsi que dans des coeurs de rat in vivo. Le but de ces expériences était de déterminer la durée de l'expression du transgène après injection intramyocardique chez le rat. Pour ce faire, nous avons développé une technique ELISA pour détecter la protéine EGFP dans des extraits de tissu cardiaque. Les résultats ont montré que la protéine EGFP était encore présente à des niveaux significatifs jusqu'à dix semaines après l'injection de vecteurs lentiviraux, alors que l'expression transgénique obtenue avec un vecteur adénoviral traditionnel a été plus limitée dans le temps. Ces résultats démontrent la capacité des vecteurs lentiviraux à exprimer des gènes d'intérêt de manière performante et stable dans le cur de rat adulte in vivo. SUMMARY Cardiovascular diseases are the first cause of morbidity and mortality in Western countries. Gene therapy offers a new approach to these diseases. Expression of therapeutic genes in the myocardium by gene transfer technologies can improve ventricular function in heart failure and stimulate neovascularization in coronary disease. Chronic heart diseases likely require sustained expression of the therapeutic gene within the heart itself. Unfortunately, the most commonly used vectors in cardiovascular gene therapy, i.e. plasmid DNA and recombinant adenovirus vectors, are limited by poor DNA uptake and transient transgene expression, respectively. Recently, lentivirus-derived vectors have attracted much interest because of their ability to achieve long-term transgene expression. In contrast to traditional retroviral vectors, lentiviral vectors are also able to transduce non- dividing cells, while presenting a comparable biosafety profile. Adult cardiomyocytes are terminally differentiated cells that do not divide under normal conditions. For these reasons, we have decided to evaluate the efficiency of lentiviral vectors for gene-transduction of adult cardiomyocytes both in vitro and in vivo. We constructed various types of lentiviral vectors containing various promoters. Vectors encoding EGFP as a reporter gene were tested in rat cardiomyocytes in vitro and in rat hearts in vivo. The aim of the experiments involved in this thesis work was to determine the duration of the expression of the transgene after rat intramyocardial injection using a quantitative assay. Therefore, an ELISA technique was set up to measure the EGFP protein in rat heart tissue extracts. Our results showed that the EGFP protein was still present at significant levels at ten weeks after lentiviral vector injection, whereas the duration of expression with adenoviral vectors was shorter. These results demonstrate that lentiviral vectors efficiently deliver genes and achieve sustained transgene expression in adult rat cardiomyocytes in vivo.
Resumo:
One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.
Resumo:
This study uses digital elevation models and ground-penetrating radar to quantify the relation between the surface morphodynamics and subsurface sedimentology in the sandy braided South Saskatchewan River, Canada. A unique aspect of the methodology is that both digital elevation model and ground-penetrating radar data were collected from the same locations in 2004, 2005, 2006 and 2007, thus enabling the surface morphodynamics to be tied explicitly to the associated evolving depositional product. The occurrence of a large flood in 2005 also allowed the influence of discharge to be assessed with respect to the processproduct relationship. The data demonstrate that the morphology of the study reach evolved even during modest discharges, but more extensive erosion was caused by the large flood. In addition, the study reach was dominated by compound bars before the flood, but switched to being dominated by unit bars during and after the flood. The extent to which the subsurface deposits (the product') were modified by the surface morphodynamics (the process') was quantified using the changes in radar-facies recorded in sequential ground-penetrating radar surveys. These surveys reveal that during the large flood there was an increase in the proportion of facies associated with bar margin accretion and larger dunes. In subsequent years, these facies became truncated and replaced with facies associated with smaller dune sets. This analysis shows that unit bars generally become truncated more laterally than vertically and, thus, they lose the high-angle bar margin deposits and smaller scale bar-top deposits. In general, the only fragments that remain of the unit bars are dune sets, thus making identification of the original unit barform problematic. This novel data set has implications for what may ultimately become preserved in the rock record.
Resumo:
Flow structures above vegetation canopies have received much attention within terrestrial and aquatic literature. This research has led to a good process understanding of mean and turbulent canopy flow structure. However, much of this research has focused on rigid or semi-rigid vegetation with relatively simple morphology. Aquatic macrophytes differ from this form, exhibiting more complex morphologies, predominantly horizontal posture in the flow and a different force balance. While some recent studies have investigated such canopies, there is still the need to examine the relevance and applicability of general canopy layer theory to these types of vegetation. Here, we report on a range of numerical experiments, using both semi-rigid and highly flexible canopies. The results for the semi-rigid canopies support existing canopy layer theory. However, for the highly flexible vegetation, the flow pattern is much more complex and suggests that a new canopy model may be required.
Resumo:
River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.
Resumo:
Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.
Long-term continuous-flow left ventricular assist devices (LVAD) as bridge to heart transplantation.
Resumo:
Heart transplantation (HTx) is the treatment of choice for end-stage heart failure but the limited availability of heart's donors still represents a major issue. So long-term mechanical circulatory support (MCS) has been proposed as an alternative treatment option to assist patients scheduled on HTx waiting list bridging them for a variable time period to cardiac transplantation-the so-called bridge-to-transplantation (BTT) strategy. Nowadays approximately 90% of patients being considered for MCS receive a left ventricular assist device (LVAD). In fact, LVAD experienced several improvements in the last decade and the predominance of continuous-flow over pulsatile-flow technology has been evident since 2008. The aim of the present report is to give an overview of continuous-flow LVAD utilization in the specific setting of the BTT strategy taking into consideration the most representative articles of the scientific literature and focusing the attention on the evolution, clinical outcomes, relevant implications on the HTx strategy and future perspectives of the continuous-flow LVAD technology.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.