695 resultados para Expression regulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. RESULTS: In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. CONCLUSION: These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The RsmA family of RNA-binding proteins are global post-transcriptional regulators that mediate extensive changes in gene expression in bacteria. They bind to, and affect the translation rate of target mRNAs, a function that is further modulated by one or more, small, untranslated competitive regulatory RNAs. To gain new insights into the nature of this protein/RNA interaction, we used X-ray crystallography to solve the structure of the Yersinia enterocolitica RsmA homologue. RsmA consists of a dimeric beta barrel from which two alpha helices are projected. From structure-based alignments of the RsmA protein family from diverse bacteria, we identified key amino acid residues likely to be involved in RNA-binding. Site-specific mutagenesis revealed that arginine at position 44, located at the N terminus of the alpha helix is essential for biological activity in vivo and RNA-binding in vitro. Mutation of this site affects swarming motility, exoenzyme and secondary metabolite production in the human pathogen Pseudomonas aeruginosa, carbon metabolism in Escherichia coli, and hydrogen cyanide production in the plant beneficial strain Pseudomonas fluorescens CHA0. R44A mutants are also unable to interact with the small untranslated RNA, RsmZ. Thus, although possessing a motif similar to the KH domain of some eukaryotic RNA-binding proteins, RsmA differs substantially and incorporates a novel class of RNA-binding site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants are faced with many of the same problems as animals-a need for regulation of metabolic processes and reproduction and for defense against enemies. Jasmonates in plants serve key roles in gene and metabolic regulation, defense, responses to trauma, reproduction, and possibly communication. Some remarkable features of plant responses, such as production of repellent volatiles as a defense against herbivorous insects, or the massive transcriptional reprogramming that occurs in response to wounding, are under the control of the jasmonate pathway. Details of the jasmonate signaling pathway are currently at the center of active research that is generating exciting results. The Jasmonate Biochemical Pathway at the STKE Connections Maps is designed to present and keep pace with these developments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Similar to animal hormones, classic plant hormones are small organic molecules that regulate physiological and developmental processes. In development, this often involves the regulation of growth through the control of cell size or division. The plant hormones auxin and brassinosteroid modulate both cell expansion and proliferation and are known for their overlapping activities in physiological assays. Recent molecular genetic analyses in the model plant Arabidopsis suggest that this reflects interdependent and often synergistic action of the two hormone pathways. Such pathway interactions probably occur through the combinatorial regulation of common target genes by auxin- and brassinosteroid-controlled transcription factors. Moreover, auxin and brassinosteroid signaling and biosynthesis and auxin transport might be linked by an emerging upstream connection involving calcium-calmodulin and phosphoinositide signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.