291 resultados para Epithelial injury
Resumo:
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS.
Resumo:
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Resumo:
Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.
Resumo:
BACKGROUND: During the last decade, the management of blunt hepatic injury has considerably changed. Three options are available as follows: nonoperative management (NOM), transarterial embolization (TAE), and surgery. We aimed to evaluate in a systematic review the current practice and outcomes in the management of Grade III to V blunt hepatic injury. METHOD: The MEDLINE database was searched using PubMed to identify English-language citations published after 2000 using the key words blunt, hepatic injury, severe, and grade III to V in different combinations. Liver injury was graded according to the American Association for the Surgery of Trauma classification on computed tomography (CT). Primary outcome analyzed was success rate in intention to treat. Critical appraisal of the literature was performed using the validated National Institute for Health and Care Excellence "Quality Assessment for Case Series" system. RESULTS: Twelve articles were selected for critical appraisal (n = 4,946 patients). The median quality score of articles was 4 of 8 (range, 2-6). Overall, the median Injury Severity Score (ISS) at admission was 26 (range, 0.6-75). A median of 66% (range, 0-100%) of patients was managed with NOM, with a success rate of 94% (range, 86-100%). TAE was used in only 3% of cases (range, 0-72%) owing to contrast extravasation on CT with a success rate of 93% (range, 81-100%); however, 9% to 30% of patients required a laparotomy. Thirty-one percent (range, 17-100%) of patients were managed with surgery owing to hemodynamic instability in most cases, with 12% to 28% requiring secondary TAE to control recurrent hepatic bleeding. Mortality was 5% (range, 0-8%) after NOM and 51% (range, 30-68%) after surgery. CONCLUSION: NOM of Grade III to V blunt hepatic injury is the first treatment option to manage hemodynamically stable patients. TAE and surgery are considered in a highly selective group of patients with contrast extravasation on CT or shock at admission, respectively. Additional standardization of the reports is necessary to allow accurate comparisons of the various management strategies. LEVEL OF EVIDENCE: Systematic review, level IV.
Resumo:
Spinal cord injuries result after diving into shallow water, often after incautious jumps head first into water of unknown depth during recreational or sport activities. Mortality is generally due to upper cervical trauma. The authors present a case of a diving-related death in a young woman who underwent medicolegal investigations. The measured water depth at the supposed dive site was 1.40 m. Postmortem radiology and autopsy revealed fractures of the body and the posterior arch of the fifth cervical vertebra, a fracture of the right transverse process of the sixth cervical vertebra and hemorrhages involving the cervical paraspinal muscles. Neuropathology showed a posterior epidural hematoma involving the whole cervical region and a symmetric laceration of the spinal cord located at the fourth and fifth cervical vertebra level, surrounded by multiple petechial hemorrhages. Toxicology revealed the presence of ethanol in both blood and urine samples. The death was attributed to cervical spine fracture (C5-C6), spinal cord contusion, and subsequent drowning. This case highlights the usefulness of postmortem radiology, examination of the deep structures of the neck, toxicology, neuropathology, and a detailed research of signs of drowning to formulate appropriate hypotheses pertaining to the cause and mechanism of death.
Resumo:
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.
Resumo:
BACKGROUND & AIMS: The beneficial effect of nonselective beta-blockers (NSBB) has recently been questioned in patients with end-stage cirrhosis. We analysed the impact of NSBB on outcomes in severe alcoholic hepatitis (AH). METHODS: This study was based on a prospective database of patients with severe, biopsy-proven AH. Patients admitted from July, 2006 to July, 2014 were retrospectively studied. Patients were divided into two groups (with and without NSBB) and assessed for the occurrence of Acute Kidney Injury (AKI) and transplant-free mortality during a 168-day follow-up period. RESULTS: One hundred thirty-nine patients were included, the mean Maddrey score was 71 ± 34 and 86 patients (61.9%) developed AKI. Forty-eight patients (34.5%) received NSBB. The overall 168-day transplant-free mortality was 50.5% (95%CI, 41.3-60.0%). The overall 168-day cumulative incidence of AKI was 61.9% (95%CI, 53.2-69.4%). When compared, patients with NSBB had a lower heart rate (65 ± 13 vs 92 ± 12, P < 0.0001) and a lower mean arterial pressure (MAP, 78 ± 3 vs 87 ± 5, P < 0.0001). Patients with NSBB had comparable MELD scores, Maddrey scores, and medical histories. The 168-day transplant-free mortality was 56.8% (95%CI, 41.3-69.7%) in patients with NSBB and 46.7% (95%CI, 35.0-57.6%) without NSBB (P = 0.25). The 168-day cumulative incidence of AKI was 89.6% (95%CI, 74.9-95.9%) with NSBB compared to 50.4% (95%CI: 39.0-60.7) for no NSBB (P = 0.0001). The independent factors predicting AKI were a higher MELD score and the presence of NSBB. CONCLUSIONS: The use of NSBB in patients with severe AH is independently associated with a higher cumulative incidence of AKI.
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4±2.3 to 5.4±2.9 mmol/L), pyruvate (126.9±65.1 to 172.3±74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27±6 to 35±9; all, p<0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r=0.56; p<0.0001), while an inverse correlation (r=-0.11; p=0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r=0.62 to r=0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.
Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1).
Resumo:
LLC-PK1 cells, an established cell line from pig kidney with proximal tubule properties, were cultivated in vitro at confluence on plastic dishes. They were then exposed (apical side) to inorganic cadmium (CdCl2, 5 microM) for periods ranging between 1 to 24 h. Analysis of the cell supernatant after homogenisation and ultracentrifugation indicated that Cd taken up in the first 3 h was bound to cytosolic high molecular weight proteins, but was redistributed to low molecular weight proteins at later stages. Induction of Cd-metallothionein (Cd-Mt) synthesis, as judged from Cd-Mt binding to a specific anti-Cd-Mt antibody and from the rate of 35S-cys incorporation into a specific protein fraction, was apparent 3-6 h after the addition of Cd to the incubation medium.
Resumo:
Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.