356 resultados para DOCA-salt hypertension


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O₂, 80% O₂ at Denver's altitude, ∼65% O₂ at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O₂ rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O₂ at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mouse remains the animal of choice in transgenic experiments, creating a need for methods of evaluating the physiology of genetically modified animals. We have established and characterized two murine models of renovascular hypertension known as the two-kidney, one clip and one-kidney, one clip models. The appropriate size of the clip lumen needed to induce high blood pressure was determined to be 0.12 mm. Clips with a lumen of 0.11 mm induced a high percentage of renal infarction, and clips with a 0.13-mm opening did not produce hypertension. Four weeks after clipping, two-kidney, one clip hypertensive mice exhibited blood pressure approximately 20 mm Hg higher than their sham-operated controls. After a similar period, this increase reached almost 35 mm Hg in the one-kidney, one clip model. Depending on the model, mice develop either renin-dependent or renin-independent hypertension. Both models are characterized by the development of cardiovascular hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Graft right ventricular (RV) function is compromised directly posttransplant, especially in heart transplantation (HTx) recipients with pretransplant pulmonary hypertension (PH). Graft RV size and systolic function, and the effect of the recipient's pulmonary haemodynamics on the graft extracellular matrix are not well characterised in the patients long-term after HTx. Aim: Comparison of RV size and systolic function in HTx recipients' long-term posttransplant stratified by the presence of pretransplant PH. Methods: HTx survivors >/=2 years posttransplant were divided into group I without pretransplant PH (pulmonary vascular resistance, PVR <2.5Wood units, n=37) and group II with PH (PVR >/=2.5Wood units, n=16). RV size and systolic function were measured using cardiac magnetic resonance imaging (CMR). The collagen content was assessed in septal endomyocardial biopsies obtained at HTx and at study inclusion. Results: Mean posttransplant follow-up was 5.2+/-2.9 years (group I) and 4.9+/-2.2 years (group II) (p=0.70). PVR was 1.5+/-0.6 vs 4.1+/-1.7Wood units pretransplant (p<0.001), and 1.2+/-0.5 vs 1.3+/-0.5Wood units at study inclusion (p=0.43). Allograft RV size and systolic function were similar in both groups (p always >/=0.07). Collagen content at transplantation and at follow-up were not different (p always >/=0.60). Conclusion: Posttransplant normalisation of pretransplant PH is associated with normal graft RV function long-term after HTx.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers. PATIENTS: A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A, SCNN1B, SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel. RESULTS: CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the alphaENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes. CONCLUSION: Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is a cardiovascular risk factor frequently encountered in everyday practice. A drug therapy is often necessary to normalize blood pressure. However, despite adequate intensive drug treatment, adequate blood pressure target are not reached. Lack of adherence to treatment is often the cause. This article reviews various techniques for assessing patients' adherence and offers several ways to improve it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Regulation of sodium excretion by the kidney is a key mechanism in the long term regulation of blood pressure, and when altered it constitutes a risk factor for the appearance of arterial hypertension. Aldosterone, which secretion depends upon salt intake in the diet, is a steroid hormone that regulates sodium reabsorption in the distal part of the nephron (functional unit of the kidney) by modulating gene transcription. It has been shown that it can act synergistically with the peptidic hormone insulin through the interaction of their signalisation pathways. Our work consisted of two distinct parts: 1) the in vitro and in vivo characterisation of Glucocorticoid-Induced Leucine Zipper (GILZ) (an aldosterone-induced gene) mechanism of action; 2) the in vitro characterisation of insulin mechanism of action and its interaction with aldosterone. GILZ mRNA, coded by the TSC22D3 gene, is strongly induced by aldosterone in the cell line of principal cells of the cortical collecting duct (CCD) mpkCCDc14, suggesting that GILZ is a mediator of aldosterone response. Co-expression of GILZ and the amiloride-sensitive epithelial sodium channel ENaC in vitro in the Xenopus oocyte expression system showed that GILZ has no direct effect on the ENaC-mediated Na+ current in basal conditions. To define the role of GILZ in the kidney and in other organs (colon, heart, skin, etc.), a conditional knock-out mouse is being produced and will allow the in vivo study of its role. Previous data showed that insulin induced a transepithelial sodium transport at supraphysiological concentrations. Insulin and the insulin-like growth factor 1 (IGF-1) are able to bind to each other receptor with an affinity 50 to 100 times lower than to their cognate receptor. Our starting hypothesis was that the insulin effect observed at these supraphysiological concentrations is actually mediated by the IGF receptor type 1 (IGF-1R). In a new cell line that presents all the characteristics of the principal cells of the CCD (mCCDc11) we have shown that both insulin and IGF-1 induce a physiologically significant increase of Na+ transport through the activation of IGF-1R. Aldosterone and insulin/IGF-1 have an additive effect on Na+ transport, through the activation of the PI3-kinase (PI3-K) pathway and the phosphorylation of the serum- and glucocorticoid-induced kinase 1 (Sgk1) by the IGF-1R, and the induction of Sgk1 expression by aldosterone. Thus, Sgk1 integrates IGF-1/insulin and aldosterone effects. We suggest that IGF-1 is physiologically relevant in the modulation of sodium balance, while insulin can only regulate Na+ transport at supraphysiological conditions. Both hormones would bind to the IGF-1R and induce Na+ transport by activating the PI3-K PDK1/2 - Sgk1 pathway. We have shown for the first time that Sgk1 is expressed and phosphorylated in principal cells of the CCD in basal conditions, although the mechanism that maintains Sgk1 phosphorylation is not known. This new role for IGF-1 suggests that it could be a salt susceptibility gene. In effect, IGF-1 stimulates Na+ and water transport in the kidney in vivo. Moreover, 35 % of the acromegalic patients (overproduction of growth hormone and IGF-1) are hypertensives (higher proportion than in normal population), and genetic analysis suggest a link between the IGF-1 gene locus and blood pressure. RÉSUMÉ La régulation de l'excrétion rénale de sodium (Na+) joue un rôle principal dans le contrôle à long terme de la pression sanguine, et ses altérations constituent un facteur de risque de l'apparition d'une hypertension artérielle. L'aldosterone, dont la sécrétion dépend de l'apport en sel dans la diète, est une hormone stéroïdienne qui régule la réabsorption de Na+ dans la partie distale du nephron (unité fonctionnelle du rein) en contrôlant la transcription de gènes. Elle peut agir de façon synergistique avec l'hormone peptidique insuline, probablement via l'interaction de leurs voies de signalisation cellulaire. Le but de notre travail comportait deux volets: 1) caractériser in vitro et in vivo le mécanisme d'action du Glucocorticoid Induced Leucine Zipper (GILZ) (un gène induit par l'aldosterone); 2) caractériser in vitro le mécanisme d'action de l'insuline et son interaction avec l'aldosterone. L'ARNm de GILZ, codé par le gène TSC22D3, est induit par l'aldosterone dans la lignée cellulaire de cellules principales du tubule collecteur cortical (CCD) mpkCCDc14, suggérant que GILZ est un médiateur potentiel de la réponse à l'aldosterone. La co-expression in vitro de GILZ et du canal à Na+ sensible à l'amiloride ENaC dans le système d'expression de l'oocyte de Xénope a montré que GILZ n'a pas d'effet sur les courants sodiques véhiculées par ENaC en conditions basales. Une souris knock-out conditionnelle de GILZ est en train d'être produite et permettra l'étude in vivo de son rôle dans le rein et d'autres organes. Des expériences préliminaires ont montré que l'insuline induit un transport transépithelial de Na+ à des concentrations supraphysiologiques. L'insuline et l'insulin-like growth factor 1 (IGF-1) peuvent se lier à leurs récepteurs réciproques avec une affinité 50 à 100 fois moindre qu'à leur propre récepteur. Nous avons donc proposé que l'effet de l'insuline soit médié par le récepteur à l'IGF type 1 (IGF-1R). Dans une nouvelle lignée cellulaire qui présente toutes les caractéristiques des cellules principales du CCD (mCCDc11) nous avons montré que les deux hormones induisent une augmentation physiologiquement significative du transport du Na+ par l'activation des IGF-1 R. Aldosterone et insuline/IGF-1 ont un effet additif sur le transport de Na+, via l'activation de la voie de la PI3-kinase et la phosphorylation de la serum- and glucocorticoid-induced kinase 1 (Sgk1) par l'IGF-1R, dont l'expression est induite par l'aldosterone. Sgk1 intègre les effets de l'insuline et l'aldosterone. Nous proposons que l'IGF-1 joue un rôle dans la modulation physiologique de la balance sodique, tandis que l'insuline régule le transport de Na+ à des concentrations supraphysiologiques. Les deux hormones agissent en se liant à l'IGF-1R et induisent le transport de Na+ en activant la cascade de signalisation PI3-K - PDK1/2 - Sgk1. Nous avons montré pour la première fois que Sgk1 est exprimée et phosphorylée dans des conditions basales dans les cellules principales du CCD, mais le mécanisme qui maintient sa phosphorylation n'est pas connu. Ce nouveau rôle pour l'IGF-1 suggère qu'il pourrait être un gène impliqué de susceptibilité au sel. Aussi, l'IGF-1 stimule le transport rénal de Na+ in vivo. De plus, 35 % des patients atteints d'acromégalie (surproduction d'hormone de croissance et d'IGF-1) sont hypertensifs (prévalence plus élevée que la population normale), et des analyses génétiques suggèrent un lien entre le locus du gène de l'IGF-1 et la pression sanguine. RÉSUMÉ GRAND PUBLIC Nos ancêtres se sont génétiquement adaptés pendant des centaines de millénaires à un environnement pauvre en sel (chlorure de sodium) dans la savane équatoriale, où ils consommaient moins de 0,1 gramme de sel par jour. On a commencé à ajouter du sel aux aliments avec l'apparition de l'agriculture (il y a 5000 à 10000 années), et aujourd'hui une diète omnivore, qui inclut des plats préparés, contient plusieurs fois la quantité de sodium nécessaire pour notre fonction physiologique normale (environ 10 grammes par jour). Le corps garde sa concentration constante dans le sang en s'adaptant à une consommation très variable de sel. Pour ceci, il module son excrétion soit directement, soit en sécrétant des hormones régulatrices. Le rein joue un rôle principal dans cette régulation puisque l'excrétion urinaire de sel change selon la diète et peut aller d'une quantité dérisoire à plus de 36 grammes par jour. L'attention qu'on prête au sel est liée à sa relation avec l'hypertension essentielle. Ainsi, le contrôle rénal de l'excrétion de sodium et d'eau est le principal mécanisme dans la régulation de la pression sanguine, et une ingestion excessive de sel pourrait être l'un des facteurs-clé déclenchant l'apparition d'un phénotype hypertensif. L'hormone aldosterone diminue l'excrétion de sodium par le rein en modulant l'expression de gènes qui pourraient être impliqués dans la sensibilité au sel. Dans une lignée cellulaire de rein l'expression du gène TSC22D3, qui se traduit en la protéine Glucocorticoid Induced Leucine Zipper (GILZ), est fortement induite par l'aldosterone. Ceci suggère que GILZ est un médiateur potentiel de l'effet de l'aldosterone, et pourrait être impliqué dans la sensibilité au sel. Pour analyser la fonction de GILZ dans le rein plusieurs approches ont été utilisées. Par exemple, une souris dans laquelle GILZ est spécifiquement inactivé dans le rein est en train d'être produite et permettra l'étude du rôle de GILZ dans l'organisme. De plus, on a montré que GILZ, en conditions basales, n'a pas d'effet direct sur la protéine transportant le sodium à travers la membrane des cellules, le canal sodique épithélial ENaC. On a aussi essayé de trouver des protéines qui interagissent directement avec GILZ utilisant une technique appelée du « double-hybride dans la levure », mais aucun candidat n'a émergé. Des études ont montré que, à de hautes concentrations, l'insuline peut aussi diminuer l'excrétion de sodium. A ces concentrations, elle peut activer son récepteur spécifique, mais aussi le récepteur d'une autre hormone, l'Insulin-Like Growth Factor 1 (IGF-1). En plus, l'infusion d'IGF-1 augmente la rétention rénale de sodium et d'eau, et des mutations du gène codant pour l'IGF-1 sont liées aux différents niveaux de pression sanguine. On a utilisé une nouvelle lignée cellulaire de rein développée dans notre laboratoire, appelée mCCDc11, pour analyser l'importance relative des deux hormones dans l'induction du transport de sodium. On a montré que les deux hormones induisent une augmentation significative du transport de sodium par l'activation de récepteurs à l'IGF-1 et non du récepteur à l'insuline. On a montré qu'à l'intérieur de la cellule leur activation induit une augmentation du transport sodique par le biais du canal ENaC en modifiant la quantité de phosphates fixés sur la protéine Serumand Glucocorticoid-induced Kinase 1 (Sgk1). On a finalement montré que l'IGF-1 et l'aldosterone ont un effet additif sur le transport de sodium en agissant toutes les deux sur Sgk1, qui intègre leurs effets dans le contrôle du transport de sodium dans le rein.